
Alex Kretzschmar

Securely accessing self-hosted
services remotely.
Remote access is easy. 
Port forwarding is dangerous.

Remote access is easy.

Just open a port.

What is a port?

Apartment Block Apartment Number

192.168.1.10:80

What is a port?

192.168.1.10:80

IP Address Port

SSH 22

DNS 53

HTTP 80

Port forwarding

is dangerous.

SSH (22)

NO PORTS OPEN

X

No-one can connect

SSH (22)

PORT 22 OPEN

Now you can connect!

SSH (22)

PORT 22 OPEN

But so can everyone else!

Firewall rules suck
• Rules must become very restrictive

• Limit based on source IP

• Limit based on protocol (TCP / UDP / ICMP)

• Must always go to a fixed destination

• Such as a hardened bastion server or jump box

• Quite inflexible

• Rules don’t scale particularly well

• Inbound / Outbound rules get confusing

Remote access is easy.

What’s my IP address again?

What about
VMs and containers?

Your container host

WEB (443)

We can use VMS and containers to limit the blast radius

Your container host

WEB (443)

But island hopping is still a thing

We can use VMS and containers limit the blast radius

Containers help a bit

• They create isolation via Linux kernel namespaces

• Many containers attach to one kernel

• Efficient

• But more risky than the entire encapsulation provided by a VM

• Containers are Linux only

• With care, more than good enough for most people self-hosting at home

There’s a better way.

What if we could just 
 (mostly) ignore the firewall altogether?

Today’s agenda
• Why port forwarding is dangerous

• Using a mesh VPN to “tunnel through” your firewall securely

• docker compose basics

• And how to run self-hosted services

• Including some reverse proxy tips with Traefik and Caddy

• Move on to some DNS trickery

• Cloudflare

• Tailscale MagicDNS

• The big reveal!

Use a mesh VPN
Disclaimer time!

Moving beyond the firewall
• Every device can talk to every other device

• (And avoid the hub and spoke VPN model)

• Traverse NAT and complex network topologies

• Encrypt traffic

• We need a way to establish identity

• Only allowing trusted users access  
to even attempt to connect to services

• No more port forwarding!

NO PORTS OPEN

X

SSH (22)

NO PORTS OPEN

X
STUN

Direct connections
• Using NAT Traversal any device can directly connect to any other device

securely no matter the network topology

• Tailscale uses a combination of external STUN and co-ordination servers

• They handle the mapping of NAT addresses to UDP ports

• Allowing devices behind stateful firewalls to connect directly to each other

Direct connections
• Using NAT Traversal any device can directly connect to any other device

securely no matter the network topology

• Tailscale uses a combination of external STUN and co-ordination servers

• They handle the mapping of NAT addresses to UDP ports

• Allowing devices behind stateful firewalls to connect directly to each other

https://tailscale.com/blog/how-nat-traversal-works

So what?

Today’s agenda
• Why port forwarding is dangerous

• Using a mesh VPN to “hop over” your firewall securely

• Discuss a bit about docker compose

• And how to run self-hosted services

• Including some reverse proxy tips with Traefik and Caddy

• Move on to some DNS trickery

• Cloudflare

• Tailscale MagicDNS

• The big reveal!

Running local
services
Using docker compose

Self-hosting is fun!
Honest.

• You own your data.

• You can lose data, and it’s your fault!

• And the outages too!

• Build a solution piece by piece

• Considered project selection means you can build solutions to last a lifetime with
real craftsmanship and care

• There is no business model to feed (except an open source developer)

https://selfhosted.show

Self-hosted app picks

Jellyfin Nextcloud

Gitea

Self-hosting basics
• Docker compose is a YAML based declarative way to deploy containers

• docker compose up -d

What happens?
• If I type “https://abs.wd.ktz.me" into a browser - what happens?

2. Returns an 
 IP address

1. Make a request
3. Creates outbound 
 connection to dest

6. Incoming packet headers 
 inspected by reverse proxy 
 and matched in ruleset

4. Outbound firewall 
 creates NAT mapping

5. Dest firewall matches 
 traffic to ruleset and 
 allows or denies

7. Remote content 
 fetched and sent 
 back to reverse 
 proxy

8. Content is served 
 back to the requestor

https://abs.wd.ktz.me

Pihole specifics
• I want each site locally to work as a standalone entity

• without internet or Tailscale involved

• I run a Pihole in each location as a local DNS server

• I place an A record for `192.168.1.10` resolving to `abs.wd.ktz.me`

• Feel free to sub Pihole (which is really just dnsmasq in a fancy frock) for
AdGuard Home, Unbound or any other DNS server you like

Tailscale madness
• What if step 6 and 7 were in totally different physical locations?

2. Returns an 
 IP address

1. Make a request
3. Creates outbound 
 connection to dest

6. Incoming packet headers 
 inspected by reverse proxy 
 and matched in ruleset

4. Outbound firewall 
 creates NAT mapping

5. Dest firewall matches 
 traffic to ruleset and 
 allows or denies

7. Remote content 
 fetched and sent 
 back to reverse 
 proxy

8. Content is served 
 back to the requestor

Caddy is stupidly simple

/etc/caddy/Caddyfile

Fun with Caddy

/etc/caddy/Caddyfile

Tailscale madness
• What if step 6 and 7 were in totally different physical locations?

2. Returns an 
 IP address

1. Make a request
3. Creates outbound 
 connection to dest

6. Incoming packet headers 
 inspected by reverse proxy 
 and matched in ruleset

4. Outbound firewall 
 creates NAT mapping

5. Dest firewall matches 
 traffic to ruleset and 
 allows or denies

7. Remote content 
 fetched and sent 
 back to reverse 
 proxy

8. Content is served 
 back to the requestor

Agenda (time check!)
• Why port forwarding is dangerous

• Using a mesh VPN to “hop over” your firewall securely

• Discuss a bit about docker compose

• And how to run self-hosted services

• Including some reverse proxy tips with Traefik and Caddy

• Move on to some DNS trickery

• Cloudflare

• Tailscale MagicDNS

• The big reveal!

Cloudflare CNAME
trickery
It’s always DNS

How to securely share services
with others and other Tailnets

• Make sure your reverse proxy is a dedicated
node on your Tailnet

• Share it out using node sharing to a friend
or relative

• Place a CNAME into a public DNS provider
pointing to that node

MagicDNS tricks

Or if it’s just your Tailnet
Use MagicDNS

• Use SplitDNS to route arbitrary
requests wherever you’d like

• This works for ts.net domains

• And for any custom domain you’d
like to go somewhere unusual

http://ts.net

The big reveal!

It’s turtles all the way down.

pres.rdu.dotsandstuff.dev

caddy.velociraptor-noodlefish.ts.net

CNAME

*.rdu.dotsandstuff.dev

It’s turtles all the way down.
This is me!

pres.rdu.dotsandstuff.dev
1

2

3

4

http://caddy.velociraptor-noodlefish.ts.net

Death Valley at Sunset

Alex Kretzschmar  
 
🖥 https://alex.ktz.me 
📽 YouTube - KTZ Systems 
🎙 https://selfhosted.show 
🦣 mastodon techhub.social/@ironicbadger 
📓 https://blog.ktz.me  
💾 https://perfectmediaserver.com  
🧑💻 https://github.com/ironicbadger

https://alex.ktz.me
https://selfhosted.show
http://techhub.social/@ironicbadger

fin.

ide

Home Assistant

My house in Raleigh Not my house

The
 Internet

Did I
close the

garage door?

Garage door
A real domain name

