
Bringing Per-CPU
Variables to Rust for Linux
Mitchell Levy

PerCPU Summary

• Locking and atomics are expensive

oAtomics are only (really) available for machine intrinsics

• Avoid data races by giving each CPU its own variable

• Only lock when we want to aggregate variables across CPUs

• Good for performance critical code!

3/17/2025 2

Caveats

• This talk is focused on x86_64

• Any arch-specific tricks won’t work on other platforms, of course

• The Rust-for-Linux project moves very quickly

• This work is very much ongoing!

• Goal: Get a flavor for "doing Rust-for-Linux work"

• Non-Goal: How to use the per-CPU API from Rust or from C

3/17/2025 3

Per-CPU Implementation

• Each CPU is assigned a Per-CPU area in memory

oOn x86, the location of this area is put in the gs segment register

• Want to add 1 to my_percpu_var?

oaddq %gs:[my_percpu_var] 1

3/17/2025 4

Per-CPU Implementation

• Who uses segmented addressing in 2025??

oNot your compiler! (Mostly)

oPer-CPU functions are macros that generate inline assembly

oExactly as horrifying as you think

• None of these operations are atomic (would defeat the

point)

oNeed to make sure we don't switch CPUs at inconvenient points

3/17/2025 5

Per-CPU Implementation

3/17/2025 6

Per-CPU in Rust

• Can't reuse a lot of the C infrastructure

oWe'd need a helper function for each combination of supported

asm instruction and operand width

oThis would also add function call overhead

3/17/2025 7

Static Per-CPU Variables

3/17/2025 8

Static Per-CPU Variables

• The actual symbol declared as a Per-CPU variable is "fake"

oNeed to prevent users from reading from it directly

• Each Per-CPU variable's address is effectively an offset into

this area

oHow? Linker magic

3/17/2025 9

Static Per-CPU Variables in C

DEFINE_PER_CPU(int, x);

int z;

z = this_cpu_read(x);

// mov ax, gs:[x]

3/17/2025 10

Per-CPU in Rust

• Rust aliasing rules

oCannot ever have a &mut T that aliases a &T or another &mut T

oMakes manually moving between pointers and references tricky

oAll of this is just juggling pointers around! A PerCPU "reference" is

the current CPU's PerCPU area + offset of the variable

oNeed to prevent users from doing this twice (hopefully in a way the

compiler can enforce, or with a minimum of unsafe code)

3/17/2025 11

Current API

define_per_cpu!(PERCPU: u64 = 0);

// expands to:

static __INIT_PERCPU: u64 = 0;

#[link_section = ".data..percpu"]

static PERCPU: StaticPerCpuSymbol<u64> = unsafe {

 transmute::<u64, StaticPerCpuSymbol<u64>>(__INIT_PERCPU)

};

3/17/2025 12

Current API

pub struct PerCpuRef<T> {

 offset: usize, guard: CpuGuard, /* others */

}

// PerCpuRef<T> behaves like a &T or a &mut T

3/17/2025 13

Current API

define_per_cpu!(PERCPU: u64 = 0);

let pcpu_ref = unsafe {

 // unsafe_get_per_cpu_ref!(PERCPU, CpuGuard::new())

 // expands to:

 let off = ptr::addr_of!(PERCPU);

 PerCpuRef::new(off, CpuGuard::new()) // unsafe fn

}

3/17/2025 14

Dynamic Per-CPU Variables

3/17/2025 15

Dynamic Per-CPU Variables

• In C you call alloc_percpu and it gives you a per-CPU

pointer

• A per-CPU pointer is just an offset, analogous to the address of a

static per-CPU symbol

• Of course, you also need the size and alignment of the type

• We can just call that function from Rust!

3/17/2025 16

The PerCpuAllocation<T> API

• We need a way to store the result of the call to alloc_percpu

• Why not just use PerCpuRef<T>?
• When the pointer from alloc_percpu falls out of scope of all users, we

want to free it

• We don’t want this to happen if a pointer to a statically-allocated variable
falls out of scope

• We don’t want this to happen if another CPU is still using the allocation

• We don’t want any uses of the allocation to live longer than the allocation
itself

3/17/2025 17

The PerCpuAllocation<T> API

struct PerCpuAllocation<T> { offset: usize, /* … */ }

impl<T> Drop for PerCpuAllocation<T> {

 fn drop(&mut self) {

 unsafe { free_percpu(self.offset as *mut c_void) }

 }

}

3/17/2025 18

Connecting the Dots

pub struct PerCpu<T> {

 alloc: Arc<PerCpuAllocation<T>>

}

impl<T> PerCpu<T> {

 pub fn get(&mut self, guard: CpuGuard) -> PerCpuRef<T> {

 unsafe { PerCpuRef::new(self.alloc.offset, guard) }

 }

}

3/17/2025 19

Problem!

• What if we do something like:

let mut num: PerCpu<u32> = PerCpu::new().unwrap();

let mut num_ref: PerCpuRef<u32> = num.get(CpuGuard::new);

drop(num);

*num_ref = 1;

3/17/2025 20

The Solution: Lifetimes

pub struct PerCpuRef<'a, T> {

 offset: usize, guard: CpuGuard, /* … */

}

impl<'a, T> PerCpuRef<'a, T> {

 pub unsafe fn new<'b>(offset: usize, guard: CpuGuard)

 -> PerCpuRef<'b, T> {

 PerCpuRef { offset, guard, /* … */ }

 }

}

3/17/2025 21

The Solution: Lifetimes

impl<T> PerCpu<T> {

 pub fn get(&'a mut self, guard: CpuGuard) {

 unsafe {

 PerCpuRef::new::<'a>(self.alloc.offset, guard)

 }

 }

}

3/17/2025 22

Problem Solved!

3/17/2025 23

What About Static Variables?

• We still want to use the PerCpuRef type for statically-

allocated variables

• What lifetime should they use?

• Rust has a special 'static lifetime

• Essentially an unbounded lifetime

3/17/2025 24

Remaining Work

• Lots of optimizations for numeric types

oRather than read/add/writeback numeric operations, just use a

single add/sub/etc instruction with gs-relative memory operands

• Needs to work on ARM64 (and other architectures)

• Plenty of bugs waiting to be found

3/17/2025 25

GitHub

• Issues · Rust-for-Linux/linux

3/17/2025 26

https://github.com/Rust-for-Linux/linux/issues

	Default Section
	Slide 1: Bringing Per-CPU Variables to Rust for Linux

	PerCPU
	Slide 2: PerCPU Summary
	Slide 3: Caveats
	Slide 4: Per-CPU Implementation
	Slide 5: Per-CPU Implementation
	Slide 6: Per-CPU Implementation
	Slide 7: Per-CPU in Rust

	Static
	Slide 8: Static Per-CPU Variables
	Slide 9: Static Per-CPU Variables
	Slide 10: Static Per-CPU Variables in C
	Slide 11: Per-CPU in Rust
	Slide 12: Current API
	Slide 13: Current API
	Slide 14: Current API

	Dynamic
	Slide 15: Dynamic Per-CPU Variables
	Slide 16: Dynamic Per-CPU Variables
	Slide 17: The PerCpuAllocation<T> API
	Slide 18: The PerCpuAllocation<T> API
	Slide 19: Connecting the Dots
	Slide 20: Problem!
	Slide 21: The Solution: Lifetimes
	Slide 22: The Solution: Lifetimes
	Slide 23: Problem Solved!
	Slide 24: What About Static Variables?

	Upstream
	Slide 25: Remaining Work
	Slide 26: GitHub

