= . " " Ll ¢
. 4 ' ", # m M il
» - . I ; e # w,lun w w

Jet Propulsmn Laborato y
Callfornla Institute of TeeH‘n“plggy

A NASApPL Apprdach to
Pk 28 ExceHehCe '

-

1Jet PropuI5|q,p Laboratory, Callfornla Instgtut,,: ‘
. . * 2Raytheon Te.chndlogltesf'_; &

Pasad A
E] X ME’-??(E—T?Q'Em

' . L i [l W ! g " ‘ " Y !

© 2024 California Institute of Technology. Government sponsorShip}ack‘nov'\'xle\aged. _
cific commercial product, process, or service by trade nam"q‘.fradé;ma‘rk, manufacturer, or otherwise, does
rsement by the United States Government or the Jet Prop!!lsfon Laboratory, California Institute of Technol

SLIM In a Nutshell.

/

Our Scope

We focus on best practices
related to software project
governance, documentation,
and development life-cycles.

242

Community Based

We solicit improvement ideas and
solutions from our community
deliver best practices back to our
members.

-~
Ne

Open Source

We treat best practices and
standards-as-code. We iteratively
improve our recommendations
through the open source tickets and
pull requests.

Software Lifecycle
-Sta_ndards

"

LY

il

‘ § 1) 4
e . B
X e

L A

e,

Wi

1

~ “Information Sharing
. Standards =

b

i

Are ‘.hgbl-’mfyﬁed with best pracnces that are:

This is Why We Developed SLIM.

Consistent
Implementation

Low Cost of
Adoption

Scale to hundreds
of projects

<~ Promote community-developed

N\ = 4

<. best practices using open reviews

‘ Implement best practices as code

= that projects can patch at low-cost

Use automated pull-request and
tickets to push out hundreds of best
practices to projects at scale

How We Deliver. How You Can Engage.

Through Our Website, We Provide:
= Downloadable best practice kits
= Submission system for best practice kits

A community-resource for exchanging and implementing best practices in software lifecycle improvements.

See our Best Practice Guides

https://nasa-ammos.github.io/slim

N
~_/

Open Source

We solicit improvement id: om our e develop best practices through standards-as-
community deliver best practices back to our code. We iteratively improve our recommendations

Through Automation, We:
= Disseminate best practice kits through
pull requests, issue tickets directly on
project repositories

Best Practice Idea Implemented as Pull Request to Software Repository . Scale'to hundreds of re POS itories
Code

https://nasa-ammos.github.io/slim

Example: README Templates

oy Example: Bug Ticket Templates

SDS-as-a-Service

Issue: Bug Report Form Example: GitHub Secu rlty

Report a bug to help us improve. If this doesn't look right, choose a different type.

° Add a title ¥ General Code security and analysis

Accens
[Bug]: Security and analysis features help keep your repositaries secure and updated. By enabiing these features, you're granting us permissian to

This repository contains source code that handles data ingest, data cata [Biling and pians perfoem read-only analysis an your orgarization's reposaries.

Unity Data Services

@) Repositcry roles ; - o

Private vulnerability reporting (Be)
) X . A% Member privieges vy o v port § tlal sec 5 4 ;i s ry Disable ab Enable al
Thanks for filing a bug ticket. We appreciate your time and effort. Please answer a few questions. Aow your e e e Cmosson, =
Con r Covenant 2 importfExport owners. Leam more about peivate vuinerability reperting.
. () Automatically enable for new public repositories
Checked for duplicates * () Moderatian
This repository contains Have you checked for duplicate issue tickets? Code, plansing, snd automation Dependency graph
[Reposttory Understand your dependencies.

Functions that parses metadata and is used within Cumulus workflows Yes - I've already checked *+ =) Automaticalty enable for new private repasitories
& Codespaces .
Functions that invoke Cumulus APl and implement OGC DAPA and STAC s v
P Website or Best Practice Guide? * & Gopiet Dependabat
Functions for data search and download through OGC DAPA and STAC © Actions i Keep your dependencies secure and up-to-date. Learn more about Dependabot.

Does the bug have to do with the SLIM website or a best prac
. . &5 Webhooks
Functions for data ingest through OGC DAPA, STAC, and CNM Dependabot alerts .

d g . Desable ab Enable al
Website s) Discussions Recetve alerts for vulherabiities that atfect your dependencies and manually generate Depenciabat pull
@ Packages requests to resoive these vuinerailities. Configure alert notifications.

Unity Documentation | Cumulus Documentation | Issue Tracker

Describe the bug *) Pages Automatically enable for new repositaries

A clear and concise description of what the bug is. If the bug has to do with a best practice guide, be sure to mention which guidd [Prokects "
Featu res P 9 7 P 9 " 9 Dependabot security updates Disable al Enable all
shippets preferred but screenst me. Secuhy Enabiing this cption wil result in Dependabet automatically opening pul requests ta resalve every
possible vunerablity. If you would like more specific configuration options leave this disabled and use

. When | dld [] action, lnoticed [] Authentication security Dependabet nies.
Data ingest @ Code security and analysis Automaticalty enable for new repositories.

Data catalog (and metadata parsing) @ Verttied and approved domains)
[3] secrets and variables v Coda scanning Disableal || Enableal
Data search . “ Identify vulnerablities and errars with CodeqL. Default CodeGL analysis will be set up an igible public

repasitories.

Third-party Accesa

Data access () Recommend the extended query sulte for repositories enabling default setup

What did you expect? * & owuth application policy The extended query includes the defaxult sulte, plus lower severity and precision queries.

A clear and concise description of what you expect to happen 21 GitHud Apps .
Contents 5 . Secret scanning omsbiess || Enatlest
&£ Perscoal access takens (

Recelve alerts on GitHub for detected secrets, keys, of other tokens.

| expected [...] Automatically enable for new public repositories
letegrationa

* Quick Start
« Changelog

(@ Schedued remnders Push protection Disable at Enable all
Bicck commits that contain supported secrets.

Archive enable for dded to secret scanning

* % 2 Logs v () Add a resource link in the CLI and web Ul when a commit is blocked

Reproducible steps £% Deleted repasitories
How would we reproduce this bug? Please walk us through it ste ep. Plain-text snippets preferred but screenshots welcome| | e i o
» Bevelopac ssltings ' Grant Dependabot access to private repositories

1.

In arder to update dependencies In your crganization, Depencabot accesses dependencies In all pubilc repcshiories and the selected private
2. repositories. The contents of these repositories will be accessible to il users in your arganization through Dependabot updates. Be sure that
3 you want to share these repositories with everyone In your crganization or consider using private registries Instead.

32 Add private repositories

More examples: collection of software metrics, unit testing standards, governance approaches, and more.

How We Monitor Infusion.

Link to
. . Issue PR Code of Contributing Change .
Project Repository . LICENSE README Docs in
Templates Templates Conduct Guide Log README

<
<
<
&
&
&

<]
(< <
S @
8
X X

anms-docs

3DTilesRendererJS

MMGIS

&

8 @
8 X & @
(<N <
8 X
8
X X X X X X &8 X

€ X @
<

<

aerie-mission-

X
<

model-template

aerie-simple-model-

X @

telecom

€ X @

€ X @

X X X X X X X X
<

<
X X

aerie-gateway

Leaderboard table rows have been randomized for effect

Impact.

No. of Best Practices No. of Best Practices Status of Standards
Infused into Projects Proposed to Projects
Specified Developing Backlogged
Types of Standards (Closed Tickets) Number of Repositories Involved
5 Label: “Governance”

3 Label: “Information Sharing” l 8 5

5 Label: “Software Lifecycle”

Contributing to SLIM:
Continuous Testing Best Practice

Presenter: Kyongsik Yun

Contributing a Continuous Testing Best Practice.

Overview of Our Open Source Standards Development Process

Our has}tow

“ e

Fork

Your Eo?ked F{’eTac')gitory

\ Approved

‘ Your Changes Changes Requested

Submi

‘ Pull Request

1. Identify a Best Practice Need

We identified a community, multi-project need for a best
practice standard in continuous testing was identified.

A new issue ticket was created to scope out the best
practice needs and potential solution:

3. Engage.and Get Community Input

https://github.com/NASA-AMMOS/slim/issues

Contributing a Continuous Testing Best Practice.

Overview of Our Open Source Standards Development Process

* Forked the SLIM repository:

Our Repository * Made proposed contributions to aid in continuous testing

best practices, such as continuous testing templates, how
to auto-generate test codes, continuous testing process
automation

2. Develop Best Practice Standard

Approved

3. Engage.and Get Community Input

‘ Pull Request

https://yunks128.github.io/slim/docs/guides/software-lifecycle/continuous-testing/
https://yunks128.github.io/slim/docs/guides/software-lifecycle/continuous-testing/

Contributing a Continuous Testing Best Practice.
Overview of Our Open Source Standards Development Process

e 1. Identify a Best Practice Need

* Solicited community input to create a pull request for

community input:

Your Eo?ked F{’eTac')gitory

Practice Standard

/‘ R
Make - - = == =Approved
L

‘ Your Changes I Changes Requested

Submi ,
\: 3. Engage and Get Community Input

| ‘ Pull Request

https://github.com/NASA-AMMOS/slim/pull/144
https://github.com/NASA-AMMOS/slim/pull/144

In-Depth | Continuous Testing Recs.

Continuous testing plan template

TESTING.md (Template) | SLi X =+

(6] 25 yunks128.github.io/slim/docs/guides/software-lifec...

Jet Propulsion Laboratory
Calfori Insttte of Teohnoogy S L1M

1.3 Software Lifecycle Continuous Testing TESTING.md (Template)

TESTING.md (Template)

[INSERT PROJECT NAME HERE] Testing

Introduction
This document provides an overview of the testing architecture for [INSERT PROJEC

Types of Testing
The below list of tests are included in our testing setup. Further details are pr

1 Unit Tests
] System Tests
[1 Integration Tests
- [1 Security Tests
[1 Performance Tests
[1 User Interfaces Tests

Unit Tests

Our unit tests ensure code is tested at a function, method, or sub-module level.
View existing to add new tests to:

skLocation(s) ik

- [INSERT PATH TO UNIT TEST FOLDER ON REVISION CONTROL]
~ [INSERT PATH TO UNIT TEST FOLDER ON REVISION CONTROL]

View or modify the testing schedule per:

*xTesting Frequency:*x

- [INSERT TRIGGER OF WHAT KICKS OFF YOUR TESTS, E.G. CODE CHANGES, COMMITS, ETC.]
— [INSERT TIMING OF WHEN YOUR TESTS KICK OFF, E.G. NIGHTLY, EVERY WEEK, ETC.]

Contributing Unit Tests

To contribute unit tests, we recommend:
- Leveraging the [INSERT YOUR UNIT TESTING FRAMEWORK OF CHOICE] framework

Automated test code generation (LLM +

Robot Framework)

Continuous Testing | SLIM +

c 25 yunks128.github.io/slim/docs/guides/software-lifec... @ ¥¢

2.2 Robot Framework and LLM Synergy

In scenarios where you are already well-versed in Robot Framework, leveraging the synergy
between Robot Framework and LLM (Llama2) can yield significant benefits. Specifically, using
LLM to auto-generate Robot Framework pseudocode streamlines the process of creating
integration test cases. Here's an example:

1. Generating Robot Framework Pseudocode with LLM:

o Use Llama2 to generate test case pseudocode in Robot Framework syntax.

*xx Settings *xx

Documentation Example test suite
Library SeleniumLibrary
wkk Test Cases xkk

Valid Login

Open Browser https://dummy-website.com chrome
Input Text username_field valid_username
Input Text password_field valid_password

Click Button login_button
Page Should Contain Welcome, User!

Invalid Login

Open Browser https://dummy-website.com chrome
Input Text username_field invalid_username
Input Text password_field invalid_password

Click Button login_button
Page Should Contain Invalid credentials
2. Direct Revision and Enhancement:

o Revise the Robot Framework pseudocode as needed:
= Add additional steps.

= Include assertions for edge cases.

= Incorporate custom keywords or libraries.
3. Test Execution:
o Run the tests locally or integrate them into your Cl pipeline.

By combining LLM's natural language capabilities with Robot Framework's structured format, you
can efficiently create and adapt test cases.

2.2.1 Example - Robot Framework and LLM Synergy

Continuous testing process automation

(pre-commit)

Continuous Testing | SLIM +

& 25 yunks128.github.io/slim/docs/guides/software-lifec.. @ ¥

3. Automate Your Tests

Our recommendation is to automate as many of your tests as possible. For tests that can't be
automated, we suggest scheduling specific times for personnel to run manual tests.

3.1 Unit Test Automation

Please consult our Testing Frameworks guide for a choice of unit testing tools we recommend.
Once selected, we recommend automating the execution of your unit tests in both of the
following ways:

1. Execute unit tests locally on your developers' machines upon local Git commits

2. Execute unit tests upon Git pushes to given Git branches on your version control system
(VCS) - hosted on GitHub.com or alternate

This idea is represented in the following diagram:

Version Control System e.g. GitHub Developers' Machines

Git Push to Specific Branch

Run Unit Tests Run Unit Tests

ﬂ Q
Y7$

Yes No

N‘n
Review Code Changes Locally Committed Fix Code

To make the above automation a reality, we recommend using pre-commit, a framework that
manages and maintains multi-language pre-commit hooks that can be used on the client side as
well as the server (VCS) side. Here's how to set it up:

Accept Pull Request

Developers' Machines

« Step 1: Install on your local machine. If you are using Python, you can install it
via pip:

pip install pre-commit

In-Depth |
Automation in
Continuous Testing

* Writing unit tests can be time-
consuming and tedious,
especially when testing large
software applications with
numerous components.

e Can we generate a test script
automatically from the source
code?

#selection at the end -
.Ob.select= 1 -
* ob.select=1
-Scene.objects.actiw
Selected™ + str(modifies

#sirror_ob.select = 0

I.. » bpy.context.selected_ob i

#ata.objects[one.name].se

rint("please select exact.‘:

.~ OPERATOR CLASSES

In-Depth | Writing Tests With LLMs

Tests show nearly 80%+ test coverage generation

Table 1: Compilation status of the generated unit tests

% Compilable #Test #Test

LLM 7 Compilable (after fix) Methods Classes

GPT-3.5-Turbo 43.1% 81.3% 1,117 130
StarCoder 70.0% 76.9% 048 123
Codex (2K) 37.5% 100% 697 160
Codex (4K) 44.4% 99.4% 774 159
Evosuite 100% NA 028 160
Manual 100% NA 1,303 160

Codex (GitHub Copilot), Starcoder (Huggingface), Evosuite (for Java); Siddiq et al. 2023

S
€
o
d
&
=
av

1mpor
from Calculator import Calculator
class TestCalculator(unittest.TestCase):
class Calculator: e Rt : def test_divide_correctly_handles_types(self):
= = class TestCalculator(unittest.TestCase): calculator = Calculator(
def __init__(self): = self.assertRaises(TypeError, calculator.divide,
'''Empty init''"® = def setUp(self): self.assertRaises (TypeError, calculator.divide,
pass self.calculator = Calculator() number"
T self.assertEquall(calculator.divide(2, 3), 2
divide(self, numberl: Unionl[int, float), number2: Unionlint, float] 10 def test_divide(self):

def test_multiply_correctly_handles_types(self):
Parameter: 1 self.assertEqual(self.calculator.divide(10, 5), 2) 1 calculator = Calculator(
numberl (int or float): First number to division 1 self.assertEqual(self.calculator.divide(-10, 5), -2) 1 self.assertRaises(TypeError, calculator.multiply, 1, "not a
number2 (int or float): Second number to division 14 self.assertEqual(self.calculator.divide(1e, -5), -2) 14 number")
self.assertRaises(ZeroDivisionError, self.calculator.divide, 10, 0) 1 self.assertRaises(TypeError, calculator.multiply, 1.8, "not a
Returns: 1 self.assertRaises(TypeError, self.calculator.divide, 10, "5") 1 number")
Float: Returns a division of two numbers informed 17 self.assertRaises(TypeError, self.calculator.divide, "10", 5) 17 self.assertEqual(calculator.multiply(2, 3), 6

w N

IR RTINS

4 -

test_multiply(self): 1 def test_sum_correctly_handles_types(self)
self.numberl = numberl calculator = Calculator()
self.number2 = number2 self.assertEqual(self.calculator.multiply(10, 5), 50) self.assertRaises(TypeError, calculator.sum, 1, "not a number"
self.assertEqual(self.calculator.multiply(-1@, 5), -50) self.assertRaises(TypeError, calculator.sum, 1.2, "not a number"
try: self.assertEqual(self.calculator.multiply(10, -5), -50) self.assertEqual(calculator.sum(2, 3), 5)
self.result = self.numberl / self.number2 R self.assertRaises(TypeError, self.calculator.multiply, 10, "5")
self.assertRaises(TypeError, self.calculator.multiply, "10", 5)

N

EWN RS

-4

test_subtract_correctly_handles_types(self):

calculator = Calculator()

self.assertRaises(TypeError, calculator.subtract, 1, "not a
number")

self.assertRaises(TypeError, calculator.subtract, 1.0, "not a
number")

self.assertEqual(calculator.subtract(2, 3), -1)

O

except TypeError
raise TypeError 27 test_sum(self):

o

©

©

except ZeroDivisionError: 2 self.assertEqual(self.calculator.sum(12, 5), 15)
raise ZeroDivisionError self.assertEqual(self.calculator.sum(-18, 5), -5
self.assertEqual(self.calculator.sum(10, -5), 5)
return self,result 2 self.assertRaises(TypeError, self.calculator.sum, 10, "5")
self.assertRaises(TypeError, self.calculator.sum, "10", 5)

e

2
2

>
26

>
2

>

3

3

3

NS

test_divide_raises_zero_division_error(self):
calculator = Calculator()
test_subtract(self): with self.assertRaises(ZeroDivisionError):
Parameter: calculator.divide(®, 1
numberl (int or float): First number to multiplication 7 self.assertEqual(self.calculator.subtract(10, 5), 5)
number2 (int or float): Second number to multiplication self.assertEqual(self.calculator.subtract(-18, 5), -15) test_multiply_raises_zero_division_error(self)
39 self.assertEqual(self.calculator.subtract(10, -5), 15) calculator = Calculator(
Returns: 4¢ self.assertRaises(TypeError, self.calculator.subtract, 10, "5") with self.assertRaises(ZeroDivisionError):
Float or Int: Returns a multiplication of two numbers informed B self.assertRaises(TypeError, self.calculator.subtract, "10", 5) calculator.multiply(@, 1

multiply(self, numberl: Union[int, float], number2: Union[int, floa

@
WWwWwwwwNNNNNNNNN
S > ~

w e W

self.numberl = numberl if __name__ __main__":
self.number2 = number2 e unittest.main()

if isinstance(self.numberl, str) or isinstance(self.number2, str):
raise TypeError

self.result = self.numberl % self.number2

Simple calculator unit test example

sum(self, numberl: Unionlint, float], number2: Union[int, float]):

Parameter:

s o ey s o o Which one is generated by Al?

number2 (int or float): Second number to sum

Returns:

X ®2A7078 WO Sourcery Ln41,Col 38 Spaces:4 UTF-8 LF {§ Python 3.8.5 (‘base': conda)

In-Depth |
Writing Tests With LLMs + Robot Framework

Update the prompt and obtain
the revised test code

Invoke the LLM and

generate the Robot Fix errors and add Run Robot to get the
Framework missing edge cases test output
pseudocode

Download and

Install
https://ollama.com/

Example: An LLM Prompt

“Generate a Robot Framework script to perform MFA
(Multi-Factor Authentication) login. The script should
navigate to the login page, fill in the username and
password fields, generate a TOTP code using the
provided secret, enter the TOTP code, click the 'Sign in'
button, and verify that the login was successful by
checking the welcome message. Script only."

In-Depth |

LLM Test Generation Outp

(base) kyun@MT-510874 1lm_unit_test % ollama run codellama "Generate a Robot Framewor
k script to perform MFA (Multi-Factor Authentication) login. The script should naviga
te to the login page, fill in the username and password fields, generate a TOTP code
using the provided secret, enter the TOTP code, click the 'Sign in' button, and verif
y that the login was successful by checking the welcome message. script only”D

ut In Action.

Here's the test o

utput:

% robot —-pythonpath . tests

Tests Report

Summary Information

Status:

Start Time:
End Time:
Elapsed Time:
Log File:

Test Statistics

All Tests

No Tags

Test Details

All Tags
Status:
Total Time:

Name

Tests. Mfa Login. LOgin
with MFA

All tests passed

20240304 06:28:01.875
20240304 06:28:06.285

00:00:04.410
log.html

Total Statistics

Statistics by Tag

Statistics by Suite

Suites Search

1 test total, 1 passed, 0 failed, 0 skipped

00:00:01.831

x Documentation

x

Tags

Pass Fail
1 0

Pass Fail

Pass Fail

1 0
1 0

Status + x Message

PASS

Skip
0

Skip
Skip

0
0

x Elapsed
00:00:01.831

Generated

20240304 06:28:06 UTC-08:00

Elapsed
00:00:02

Elapsed
Elapsed

00:00:04
00:00:04

x

3 days 4 hours ago

Pass / Fail / Skip

Pass / Fail / Skip

Pass / Fail / Skip

Start/ End

20240304 06:28:04.384

20240304 06:28:06.215

n-Depth |

ools and Frameworks for Running Tests

Development APIs and
Module Testing

Mocking, Stubbing, and
Simulating Test Services
HTTP Services

Static Analysis

Dynamic Analysis and Test
Coverage

Complexity Analysis and
Runtime Performance
Security Testing

Web Applications Testing

Testing Frameworks [SLIM X | +

@) 23 yunks128.github.io/slim/docs/guides/software-lifecycle/continuous-testing/testing-frameworks

Jet Propulsion Laboratory) IM Guides Contribute About

California Institute of Technology

Guides " Software Lifecycle Continuous Testing Testing Frameworks

Software Lifecycle

Testing Frameworks

Application Starter Kits

Securit: .
Y » Continuous Testing

Continuous Integration
o For Development APIs

£ v v v (£

Continuous Testing
= For Module Testing (xUnit)

= Java
= JUnit: A popular Java testing framework for unit and integration testing.

TESTING.md (Example)

TESTING.md (Template)
= JavaScript/TypeScript

= Jest: A widely used JavaScript testing framework for unit and integration testing.
Testing Frameworks = Python
= PyUnit: The built-in unit testing library for Python.

code-coverage-tools

Governance
= PyTest: A popular Python testing framework for unit and functional testing.

= C#
= NUnit: A widely used testing framework for .NET applications.
= C[C++
= cUnit/CppUnit: Testing frameworks for C/C++.
= For Mocking, Stubbing, and Simulating Test Services
= Java
= Mockito: A Java mocking framework for unit testing.

Documentation

= EasyMock: A library for creating mock objects in unit tests.
= JMock: A framework for mocking Java interfaces.

= Python
= PyTest: A popular Python testing framework with mocking support.
= Nose2: A test discovery and execution framework for Python.
= Mock: A Python library for mocking objects and behavior.

= C#
= Moq: A mocking framework for .NET.
= NSubstitute: A friendly substitute for .NET mocking libraries.
= FakeltEasy: An easy-to-use mocking framework for .NET.

= C[C++
= CMock: A mocking framework for C.

N A IR e e

https://yunks128.github.io/slim/docs/guides/software-lifecycle/continuous-testing/testing-frameworks

GitHub

&

35
LESSOHS Lea rnEd. Our Repository

 Start Early: Begin testing from the outset
of development to catch issues early.
Use our template!

* Automate Wisely: Recommending
automation tools like LLMs and Robot
Framework makes infusion of best
practices easier.

Your Forked Repository

* Continuous Improvement: Regularly
refine testing processes and our best

practice guide to adapt to evolving
project needs, for example: Automate Changes Requested

test execution!

Approved

Join,us in our effort to improve our latest guide:
https://sithub.com/NASA-AMMOS/slim/pull /144 E—

Pull Request

https://github.com/NASA-AMMOS/slim/pull/144

Contributing to SLIM:
Continuous Integration Best Practice

Presenter: John Engelke

Contributing a Continuous Integration Best Practice.
Overview of Our Open Source Standards Development Process

1. Identify a Best Practice Need

Identified Needs Such As:
* Complexity
* Moving pieces
* Dependency tracking, testing and
reporting
* Modular deployments

Through Community Engagement, We Identified Software Challenges:
e Reliability and reproducibility

* A focus on scientific solutions (less on delivery)
Many project- or developer-level contributions
Managing integration with other (micro-)services
Compartmentalize outputs and reporting

* Deployments
* Rapid development with ease of

Purpose-driven software or (micro-)services spin up
* Build tooling non-standardization
3. Engage and Get Community Input * Auditing

* Traceability
* Security

Contributing a Continuous Integration Best Practice.
Overview of Our Open Source Standards Development Process

Contribution Model
Leveraged SLIM’s community contribution model
Created a ticket where we designed an architectural
solution satisfying earlier needs
Iterated many versions a best practice guide to
outline our Cl recommendation, including with
tooling suggestions
Proposed Best Practice
* Reference Architecture
‘ * Implementation guide for Cl Best Practices
2 . Develop BESt Pra ctice Sta nda rd * UML diagrams delineate concerns and
approach (Single Source of Truth, Fail Fast/Fix
Fast, Visibility/Open Results,
On-commit Testing)
* Tooling Recommendations
» Starter Kits (templates) with Turnkey Standards
* Built-In Cl Tooling with Repository Publishing
Automation
* Documentation As Code, Testing As Code

1. Identify a Best Practice Need

3. Engage and Get Community Input

Contributing a Continuous Integration Best Practice.
Overview of Our Open Source Standards Development Process

1. Identify a Best Practice Need

Gathered Community Feedback

* Solicited project and user feedback through discussions
and pull-request comments

e Updated iterative standards until satisfactory results

2. Develop Best Practice Standard

3. Engage and Get Community Input

In-Depth | Cl Reference Architectures

Philosophy and Practice

SLIM Documentation
* https://nasa-ammaos.github.io/slim/

* ‘See our Best Practice Guides’ -> ‘Software Lifecycle’ ->
‘Continuous Integration’ -> ‘Cl Reference Architectures’

Cl Reference Architectures

e https://nasa-ammos.github.io/slim/docs/guides/software-

lifecycle/continuous-integration/reference-architecture

Pipeline
Development System (1)

Commit — Validate

trigger
Continuous Integration System (2)

_.--P» Package —— Publish

Compile —» Test

\b Report

trigger (opt.)

, Continuous Deployment System (3) .

—
Orchestrate < Release

https://nasa-ammos.github.io/slim/
https://nasa-ammos.github.io/slim/docs/guides/software-lifecycle/continuous-integration/reference-architecture
https://nasa-ammos.github.io/slim/docs/guides/software-lifecycle/continuous-integration/reference-architecture

In-Depth | Cl Tooling Recommendations

Philosophy and Practice CI Tools and Frameworks \ B

= For deploying services
= Using workflows

« Continuous Integration = Using Puppet
M o For Analysis and Testing = Using Ansible
S LI M Docu me ntat ion = For verification, notification and assembly = Using Chef

= Using Git hooks . i
= Using scripts

* https://nasa-ammos.github.io/slim/ * Using Github Actions B

= Implementing build tooling (e.g. Maven plugins, SetupTools, Make) = Implementing platform scripting [shell, Powershell]

I . . ’ 0 . .
® See 0 u r Best Pra Ct|ce G u | des _> Using C-hécksum hashing = For cloud or datacenter deployments
= For credentialing = Using Terraform
{ > ’ { H = Implementing keystore Jenkins Credentials Binding Plugin :
Software Lifecycle” -> ‘Continuous pemena e s - e
X ” b - UsTng SS = Using CloudFormation
Integration’ -> ‘Cl Tools and Usingoauth - Using Saltstack
F k ; = For exeFutlng apd reportlng tests o For Release Management
rameworks = Using Jenkins plugins = For packaging
= Using TravisCI Build Addons = Using Docker
= Using (Java) Maven plugins = Implementing archiving (tar, zip, gz)
= Using (Python) SetupTools = Using RPM
H = Using (C#) NUnit = Usi
Cl Reference Architectures e L Using JAR, WAR
= Using (C/C++) Make/Cmake | = For releasing software
= Using (Node.js) npm-test ‘ = Using Jenkins ()
o . / / .
htt pS 1 nasa = Using (any) Testrail Connector ‘ = Using TravisCI
& M d " o For Compilation ‘ = Using Github Actions
a m mos ¥ glth u b v 'O/Sl I m/dOCS/gU Id ES/ = For build integration and reporting ‘ = For storing build artifacts
H H = Using Jenki = Usi ft itori
software-lifecycle/continuous- DR VTR R e
= Using TravisCI = Using Artifactory
integration/continuous-integration- e P
= Using (Java) Maven = Using OSS repositories
fra mewo r-kS = Using (Python) SetupTools/Pip = Using (Java) Maven Central
= Using (C#) NuGet = Using (Python) PyPi
= Using (C/C++) Make/Cmake = Using (C#) Nuget
= Using (Node.js) npm = Using (C/C++) yum, dnf
= Using (any) Ant | : = Using (Node.js) npm

https://nasa-ammos.github.io/slim/

In-Depth: Cl SLIM Starter Kits
Shift Left Philosophy

 Embed security (and more generally) quality and release
checks into development !

e Starter Kits Provide Baseline Cl Tools

Static Code Code Signing
Analysis Validation

Vulnerability Monitor
Scan . Detect
Respond

Recover

Compliance
Penetration Validation
Test

w -

i »
ﬁ’ Open Worldwide Application Security Project (OWASP), s.v. “OWASP DevSecOps Guideline v-0.2,” accessed March 5, 2024,

https://owasp.org/www-project-devsecops-guideline/latest/
https://owasp.org/www-project-devsecops-guideline/latest/

In-Depth | CI SLIM Starter Kits

Java Starter Kit

<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance" xsi:schemaLocC
<modelVersion>4.0.0</modelVersion>

<name>JPL - AMMOS - IDS - Sample Projects SLIM Starterkit Java Simple</name=>
<description>Sample Projects -- A sample Java project using Maven to demonstrate a simple application configuratio

<parent>
<groupId> nasa.ammos</groupIld>
artifactId: artifactId>
version>1.0.0</version>
parent>

<groupId>gov.nasa.jpl.ammos. ids.sample_projects</groupId=>
<artifactId>maven-simple</artifactId>
<version>${revision}</version>

<packaging>jar</packaging>

<properties>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
<! Tagging CI -
<semver>1.0.0</semver>
<revision>${semver}${buildnum}${shal}s{changelist}</revision>

ONING
<version.junit>4.13.
rsion.s1f4j
</propertie

Connection>

<build>
<plugins>
<plugin>
<groupId>org.codehaus.gmaven</groupId=>
<artifactId>groovy-maven-plugin</artifactId>
</plugin>
</plugins>
</build>

<dependencies>
<dependency>
groupId>juni groupId>
</artifactId>
<version=${version.junit}</version>
</dependency>
< ndency

Automation-based, Cl-friendly Versioning
* Build/archive on code push
» Release/publish on code tag

Toolchain
* JDK
Git
Jenkins/GH Actions
* Maven

Artifactory/Nexus

In-Depth | CI SLIM Starter Kits

/

Java Starter Kit
ache

In-Depth | CI SLIM Starter Kits

Java Starter Kit

Tracking System Touchpoints
 Workstation: Code, at modification time —Semantic Version
e CVS: Git, at commit time — Commit Hash
e Cl Service: Jenkins, at build time — build number
 Artifact Repository: Artifactory, at publish —SNAPSHOT flag

|dentify code origins precisely from 15t commit onward

Versioning Examples
e SNAPSHOT: mars-3.8.0b52-bb59d69-SNAPSHOT.jar
* Release: mars-3.8.0.jar + version file in JAR contents

In-Depth | CI SLIM Starter Kits

Python Starter Kit

SLIM Standards in a Single Repository

* Instant, development-ready GitHub Application
* Rapid implementation via GH Templates
e Plug-and-Play CI
* Automated repository publishing onitag

 Documentation as Code
* Ticket and Pull Request templates
* Ready for Small and Large Teams

 Testing as Code
» Gateway to key Shift Left security features

In-Depth | CI SLIM Starter Kits

Python Starter Kit: Documentation Integration

:= README.md

[INSERT YOUR LOGO IMAGE HERE (IF APPLICABLE)]

[INSERT YOUR REPO [PROJ NAME HERE]

[INSERT A SINGLE SENTENCE DESCRIBING THE PURPOSE OF YOUR REPO / PROJ]

[INSERT YOUR BADGES HERE (SEE: https://shields.io)]
[INSERT SCREENSHOT OF YOUR SOFTWARE, IF APPLICABLE]
[INSERT MORE DETAILED DESCRIPTION OF YOUR REPOSITORY HERE]

[INSERT LIST OF IMPORTANT PROJECT / REPO LINKS HERE]

Features

e [INSERT LIST OF FEATURES IMPORTANT TO YOUR USERS HERE]
e Python build tooling based on PEP-517 and PEP-518 standards

e Build, release and publish automation takes place automatically using GitHub Actions.

Q jpl-jengelke NASA-AMMOS/]
.github
slim_sample_project
tests

[.gitignore

[3 CHANGELOG.md

[CITATION.md

0O CODE_OF_CONDUCT.md

[CONTRIBUTING.md
LICENSE
MANIFEST.in
README.md
pyproject.toml
requirements.txt
setup.cfg

setup.py

In-Depth | CI SLIM Starter Kits

Python Starter Kit: Scanning Features

Software Composition Analysis

This section contains links to sample actions, templates and configurations that
analyze and validate composition of Open Source Software (0SS) components in
software systems. Identifying software and licensing vulnerabilites and ensuring
routine software updates is an OSS cybersecurity best practice.

Dependabot

A GitHub ecosystem tool for dependency version and security vulnerability
analysis.

Automated Dependency Updates

This Dependabot task provides an automated check for OSS component updates

and automatically creates pull requests to commit new versions.
Starter Kit:

e SLIM Starterkit Python -- Dependabot Script to install in your GitHub repo

In-Depth | CI SLIM Starter Kits

Python Starter Kit: Built-In Package Index Publishing

D) * Traceability with versioning through
oYo Setup Tools SCM (Git-synchronized)

o * GitHub Actions Containerized Builds
GitHub Actiqns

* Code Testing
e Package Validation

* PyPi (Python Package Index) release on Tag

* Integrated PyPi documentation metadata
* Fail Fast alerts on build/release error
e Security Alerts

Shift Left Fast: A.Deployable Python App in 10 Minutes
Friday, March 15, 2024 - 13:45 to 14:00 | Ballroom DE

Questions?

Join Us @ https://nasa-ammos.github.io/slim

Speaker Contacts A Special Thanks To
Rishi Verma (rishi.verma@jpl.nasa.gov) * Lan Dang
Kyongsik Yun (kyongsik.yun@jpl.nasa.gov) e The SCaLE Team

John Engelke (jengelke@jpl.nasa.gov) e The SLIM community

mailto:rishi.verma@jpl.nasa.gov
mailto:kyongsik.yun@jpl.nasa.gov
mailto:jengelke@jpl.nasa.gov
https://nasa-ammos.github.io/slim

