
The Open Source Way to
Standards Development:

A NASA-JPL Approach to Software
Excellence

Speakers: Rishi Verma1, Kyongsik Yun1, John Engelke1,2

1Jet Propulsion Laboratory, California Ins?tute of Technology
2Raytheon Technologies

© 2024 California Institute of Technology. Government sponsorship acknowledged.
Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its

endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

SLIM In a Nutshell.

Our Scope
We focus on best practices
related to software project

governance, documentation,
and development life-cycles.

Community Based
We solicit improvement ideas and

solu6ons from our community
deliver best prac6ces back to our

members.

Open Source
We treat best prac6ces and

standards-as-code. We itera6vely
improve our recommenda6ons

through the open source 6ckets and
pull requests.

Continuous Pipelines

Cybersecurity Scans

Artifact Management

Software Lifecycle
Standards

Tes9ng

Dependency Management

Project Templates

So=ware Publicity

Training
Documentation Standards

Information Sharing
Standards

User Feedback

Coding Standards

Role Management

Decision Making Triaging

Governance
Standards

Task Management

Contribution Policies
Vetting Policies

How can government so/ware be infused with best prac7ces that are:

Ques1on

Consistently Implemented

Have a low cost of adop5on for projects

Infused in a manner that easily scales to hundreds of projects

This is Why We Developed SLIM.

Strategy

Strategy

Strategy

Consistent
Implementa.on

Low Cost of
Adoption

Scale to hundreds
of projects

Promote community-developed
best practices using open reviews

Implement best practices as code
that projects can patch at low-cost

Use automated pull-request and
tickets to push out hundreds of best
practices to projects at scale

💵

🙋

⚙

Through Our Website, We Provide:
§ Downloadable best practice kits
§ Submission system for best practice kits

h"ps://nasa-ammos.github.io/slim

How We Deliver. How You Can Engage.

Through Automation, We:
§ Disseminate best practice kits through

pull requests, issue tickets directly on
project repositories

§ Scale to hundreds of repositories

https://nasa-ammos.github.io/slim

Example: README Templates

Example: Bug Ticket Templates
Example: GitHub Security

More examples: collec.on of so1ware metrics, unit tes.ng standards, governance approaches, and more.

How We Monitor Infusion.

Leaderboard table rows have been randomized for effect

Impact.
No. of Best Practices
Infused into Projects

556

No. of Best Practices
Proposed to Projects

768

185
Number of Repositories Involved

Label: “Governance”

Label: “Information Sharing”

Label: “Software Lifecycle”

5

3

5

Types of Standards (Closed Tickets)

13 9
Specified

Status of Standards

Developing

56
Backlogged

Contribu1ng to SLIM:
Con1nuous Tes1ng Best Prac1ce

Presenter: Kyongsik Yun

Contribu3ng a Con3nuous Tes3ng Best Prac3ce.
Overview of Our Open Source Standards Development Process

1. Identify a Best Practice Need

2. Develop Best Practice Standard

3. Engage and Get Community Input

• We identified a community, multi-project need for a best
practice standard in continuous testing was identified.

• A new issue ticket was created to scope out the best
practice needs and potential solution:
https://github.com/NASA-AMMOS/slim/issues

https://github.com/NASA-AMMOS/slim/issues

Contribu3ng a Con3nuous Tes3ng Best Prac3ce.
Overview of Our Open Source Standards Development Process

1. IdenAfy a Best PracAce Need

• Forked the SLIM repository:
https://yunks128.github.io/slim/docs/guides/software-
lifecycle/continuous-testing/

• Made proposed contributions to aid in continuous testing
best practices, such as continuous testing templates, how
to auto-generate test codes, continuous testing process
automation

2. Develop Best PracAce Standard

3. Engage and Get Community Input

https://yunks128.github.io/slim/docs/guides/software-lifecycle/continuous-testing/
https://yunks128.github.io/slim/docs/guides/software-lifecycle/continuous-testing/

Contributing a Continuous Testing Best Practice.
Overview of Our Open Source Standards Development Process

1. Identify a Best Practice Need

2. Develop Best Practice Standard

3. Engage and Get Community Input

• Solicited community input to create a pull request for
community input: hJps://github.com/NASA-
AMMOS/slim/pull/144

https://github.com/NASA-AMMOS/slim/pull/144
https://github.com/NASA-AMMOS/slim/pull/144

In-Depth | Continuous Testing Recs.
ConMnuous tesMng plan template Automated test code generation (LLM +

Robot Framework)
Continuous testing process automation
(pre-commit)

In-Depth |
Automation in
Continuous Testing

• Writing unit tests can be time-
consuming and tedious,
especially when testing large
software applications with
numerous components.
• Can we generate a test script

automatically from the source
code?

In-Depth | Wri.ng Tests With LLMs

Tests show nearly 80%+ test coverage genera5on

Codex (GitHub Copilot), Starcoder (Huggingface), Evosuite (for Java); Siddiq et al. 2023

Simple calculator unit test example
Which one is generated by AI?

1 2

In-Depth |
Writing Tests With LLMs + Robot Framework

Download and
Install

https://ollama.com/

Invoke the LLM and
generate the Robot

Framework
pseudocode

Fix errors and add
missing edge cases

Update the prompt and obtain
the revised test code

Run Robot to get the
test output

Example: An LLM Prompt

“Generate a Robot Framework script to perform MFA
(Multi-Factor Authentication) login. The script should
navigate to the login page, fill in the username and

password fields, generate a TOTP code using the
provided secret, enter the TOTP code, click the 'Sign in'

button, and verify that the login was successful by
checking the welcome message. Script only."

In-Depth |
LLM Test Generation Output In Action.

In-Depth |
Tools and Frameworks for Running Tests

h"ps://yunks128.github.io/slim/docs/guides/so9ware-lifecycle/con?nuous-tes?ng/tes?ng-frameworks

• Development APIs and
Module TesLng

• Mocking, Stubbing, and
SimulaLng Test Services

• HTTP Services
• StaLc Analysis
• Dynamic Analysis and Test

Coverage
• Complexity Analysis and

RunLme Performance
• Security TesLng
• Web ApplicaLons TesLng

Lessons Learned.
• Start Early: Begin tesLng from the outset

of development to catch issues early.
Use our template!
• Automate Wisely: Recommending

automaLon tools like LLMs and Robot
Framework makes infusion of best
pracLces easier.
• ConLnuous Improvement: Regularly

refine tesLng processes and our best
pracLce guide to adapt to evolving
project needs, for example: Automate
test execu.on!

Join us in our effort to improve our latest guide:
https://github.com/NASA-AMMOS/slim/pull/144

https://github.com/NASA-AMMOS/slim/pull/144

Contributing to SLIM:
Continuous Integration Best Practice

Presenter: John Engelke

Contributing a Continuous Integration Best Practice.
Overview of Our Open Source Standards Development Process

1. IdenAfy a Best PracAce Need

2. Develop Best PracAce Standard

3. Engage and Get Community Input

• Through Community Engagement, We Iden5fied So8ware Challenges:
• Reliability and reproducibility
• A focus on scien4fic solu4ons (less on delivery)
• Many project- or developer-level contribu4ons
• Managing integra4on with other (micro-)services
• Compartmentalize outputs and repor4ng
• Purpose-driven soCware or (micro-)services

Identified Needs Such As:
• Complexity

• Moving pieces
• Dependency tracking, testing and

reporting
• Modular deployments

• Deployments
• Rapid development with ease of

spin up
• Build tooling non-standardization

• Auditing
• Traceability
• Security

Contributing a Continuous Integration Best Practice.
Overview of Our Open Source Standards Development Process

1. Identify a Best Practice Need

2. Develop Best Practice Standard

3. Engage and Get Community Input

Contribu5on Model
• Leveraged SLIM’s community contribu4on model
• Created a 4cket where we designed an architectural

solu4on sa4sfying earlier needs
• Iterated many versions a best prac4ce guide to

outline our CI recommenda4on, including with
tooling sugges4ons

Proposed Best Prac5ce
• Reference Architecture

• Implementa4on guide for CI Best Prac4ces
• UML diagrams delineate concerns and

approach (Single Source of Truth, Fail Fast/Fix
Fast, Visibility/Open Results,
On-commit Tes4ng)

• Tooling Recommenda4ons
• Starter Kits (templates) with Turnkey Standards

• Built-In CI Tooling with Repository Publishing
Automa4on

• Documenta4on As Code, Tes4ng As Code

Contributing a Continuous Integration Best Practice.
Overview of Our Open Source Standards Development Process

1. IdenAfy a Best PracAce Need

3. Engage and Get Community Input

Gathered Community Feedback
• Solicited project and user feedback through discussions

and pull-request comments
• Updated iterative standards until satisfactory results

2. Develop Best Practice Standard

In-Depth | CI Reference Architectures
Philosophy and PracAce

SLIM Documenta/on
• h"ps://nasa-ammos.github.io/slim/
• ‘See our Best Prac;ce Guides’ -> ‘So@ware Lifecycle’ ->

‘Con;nuous Integra;on’ -> ‘CI Reference Architectures’

CI Reference Architectures
• h"ps://nasa-ammos.github.io/slim/docs/guides/so@ware-

lifecycle/con;nuous-integra;on/reference-architecture

https://nasa-ammos.github.io/slim/
https://nasa-ammos.github.io/slim/docs/guides/software-lifecycle/continuous-integration/reference-architecture
https://nasa-ammos.github.io/slim/docs/guides/software-lifecycle/continuous-integration/reference-architecture

In-Depth | CI Tooling Recommendations
Philosophy and PracAce

SLIM Documentation
• https://nasa-ammos.github.io/slim/
• ‘See our Best Practice Guides’ ->

‘Software Lifecycle’ -> ‘Continuous
Integration’ -> ‘CI Tools and
Frameworks’

CI Reference Architectures
• https://nasa-

ammos.github.io/slim/docs/guides/
software-lifecycle/continuous-
integration/continuous-integration-
frameworks

https://nasa-ammos.github.io/slim/

In-Depth: CI SLIM Starter Kits
Shift Left Philosophy
• Embed security (and more generally) quality and release

checks into development 1

• Starter Kits Provide Baseline CI Tools

1 Open Worldwide Application Security Project (OWASP), s.v. “OWASP DevSecOps Guideline v-0.2,” accessed March 5, 2024, https://owasp.org/www-
project-devsecops-guideline/latest/.

https://owasp.org/www-project-devsecops-guideline/latest/
https://owasp.org/www-project-devsecops-guideline/latest/

In-Depth | CI SLIM Starter Kits
Java Starter Kit

Automation-based, CI-friendly Versioning
• Build/archive on code push
• Release/publish on code tag

Toolchain
• JDK
• Git
• Jenkins/GH Actions
• Maven
• Artifactory/Nexus

In-Depth | CI SLIM Starter Kits
Java Starter Kit

Tracking System Touchpoints
• Workstation: Code, at modification time – Semantic Version
• CVS: Git, at commit time – Commit Hash
• CI Service: Jenkins, at build time – build number
• Artifact Repository: Artifactory, at publish – SNAPSHOT flag

Identify code origins precisely from 1st commit onward
Versioning Examples
• SNAPSHOT: mars-3.8.0b52-bb59d69-SNAPSHOT.jar
• Release: mars-3.8.0.jar + version file in JAR contents

In-Depth | CI SLIM Starter Kits
Java Starter Kit

SLIM Standards in a Single Repository
• Instant, development-ready GitHub ApplicaAon
• Rapid implementaLon via GH Templates
• Plug-and-Play CI
• Automated repository publishing on tag

• DocumentaAon as Code
• Ticket and Pull Request templates
• Ready for Small and Large Teams

• TesAng as Code
• Gateway to key ShiP LeP security features

In-Depth | CI SLIM Starter Kits
Python Starter Kit

In-Depth | CI SLIM Starter Kits
Python Starter Kit: Documentation Integration

In-Depth | CI SLIM Starter Kits
Python Starter Kit: Scanning Features

In-Depth | CI SLIM Starter Kits
Python Starter Kit: Built-In Package Index Publishing

• Traceability with versioning through
Setup Tools SCM (Git-synchronized)
• GitHub AcAons Containerized Builds
• Code TesLng
• Package ValidaLon

• PyPi (Python Package Index) release on Tag
• Integrated PyPi documentaLon metadata

• Fail Fast alerts on build/release error
• Security Alerts

Shift Left Fast: A Deployable Python App in 10 Minutes
Friday, March 15, 2024 - 13:45 to 14:00 | Ballroom DE

Speaker Contacts
• Lan Dang
• The SCaLE Team
• The SLIM community

Rishi Verma (rishi.verma@jpl.nasa.gov)
Kyongsik Yun (kyongsik.yun@jpl.nasa.gov)
John Engelke (jengelke@jpl.nasa.gov)

A Special Thanks To

Questions?
Join Us @ h5ps://nasa-ammos.github.io/slim

mailto:rishi.verma@jpl.nasa.gov
mailto:kyongsik.yun@jpl.nasa.gov
mailto:jengelke@jpl.nasa.gov
https://nasa-ammos.github.io/slim

