
Scaling Your Kubernetes
Clusters Without Going Broke

Joe Allen

Staff Site Reliability Engineer at Subsplash

Agenda

Overview

Understanding The Problem

The Solution

Best Practices

Cost Optimizations

#
#

Kubernetes Autoscaling HPA/VPA

Kubernetes Autoscaling CAS

● Challenge to configure and maintain
○ Multiple Availability Zones
○ Instance types are inflexible
○ Spot capacity
○ Low cluster utilization
○ Slow to scale

● VPA may break a working deployment
● Slows innovation

Kubernetes Autoscaling CAS (AZ)

The Solution - Karpenter

● High-Performance Autoscaler
● Can be ran standalone or alongside CAS
● Simplifies configuration, giving you the right node at the right time
● Dynamically chooses the best-suited node for unschedulable pods
● Automatically consolidates nodes and removes nodes that are no longer

needed
● Open-Source - Donated to CNCF in 2023
● Built for AWS, but designed to work with other cloud providers

○ Provider for Azure is in Beta
○ Provider for GCP is in development, but still pre-Alpha

How Does It Work

Karpenter Concepts

apiVersion: karpenter.k8s.aws/v1

kind: EC2NodeClass

metadata:

 name: default

spec:

 amiFamily: AL2

 amiSelectorTerms:

 - alias: al2@latest

apiVersion: karpenter.sh/v1

kind: NodePool

metadata:

 name: default

spec:

 weight: 100

 template:

 spec:

 requirements:

 - key: karpenter.k8s.aws/instance-category

 operator: In

 values: [c, m, r]

 - key: karpenter.k8s.aws/instance-generation

 operator: Gt

 values: ['4']

 - key: kubernetes.io/arch

 operator: In

 values: [amd64]

Strategies For Defining NodePools

Single Multiple Weighted

A single NodePool for all
workloads

Isolate workloads for
different purposes

Define preference across
NodePools

Notes:
● Simplest use-case
● All workloads must be

compatible with cpu
architecture or specify pod
requirements

Notes:
● Isolate for security or

stability
● Different AMI
● Team Separation

Notes:
● Prioritize RI and Savings

Plans
● Can be use as an alternative

to taints/tolerations when
isolation isn’t a concern

Optimizing For Cost (RI/Savings Plan)
apiVersion: karpenter.sh/v1

kind: NodePool

metadata:

 name: savings-plan

spec:

 weight: 100

 limits:

 cpu: "20"

 template:

 spec:

 requirements:

 - key: karpenter.k8s.aws/instance-family

 operator: In

 values: [c4]

 - key: kubernetes.io/arch

 operator: In

 values: [amd64]

 - key: karpenter.sh/capacity-type

 operator: In

 values: [on-demand]

Pools for savings plans or reserved instances need to
weighted higher than other pools

Limit should match your plan commitment

Must be set if using an EC2 Instance Savings Plan

Must be set to on-demand

apiVersion: karpenter.sh/v1

kind: NodePool

metadata:

 name: default

spec:

 weight: 50

 limits:

 cpu: "200"

 template:

 spec:

 requirements:

 - key: kubernetes.io/arch

 operator: In

 values: [amd64, arm64]

 - key: karpenter.k8s.aws/instance-category

 operator: NotIn

 values: [t]

 - key: karpenter.k8s.aws/instance-generation

 operator: Gt

 values: ['3']

 - key: karpenter.sh/instance-size

 operator: NotIn

 values: [nano, micro, small, medium]

 - key: karpenter.sh/instance-family

 operator: NotIn

 values: [c4, m4, r4]

 - key: karpenter.sh/capacity-type

 operator: In

 values: [on-demand, spot]

Optimizing For Cost (On-Demand/Spot)

Support multi-arch to ensure the lowest cost possible

Avoid smaller instances

If splitting pools on capacity type, the spot pool should have a higher
weight if using taints

Restrict instances that use credits

Disruption
apiVersion: karpenter.sh/v1

kind: NodePool

…
spec:

 disruption:

 consolidationPolicy: WhenEmptyOrUnderutilized

 consolidateAfter: 10m

 budgets:

 - nodes: '20%'

 reasons:

 - Empty

 - nodes: '1'

 schedule: '@daily'

 duration: 60m

 reasons:

 - Drifted

 - Underutilized

 template:

 spec:

 expireAfter: 720h

 terminationGracePeriod: 24h

Controls deleting nodes, budgets can provide more restrictions

Allows terminating 20% of the nodes at a time if they are empty

Limits removing underutilized or drifted nodes from being
consolidated

Make sure you set terminationGracePeriod if you use expireAfter

How Karpenter Uses Affinity

spec:

 affinity:

 nodeAffinity:

 requiredDuringSchedulingIgnoredDuringExecution:

 nodeSelectorTerms:

 - matchExpressions:

 - key: kubernetes.io/arch

 operator: In

 values: [arm64]

 preferredDuringSchedulingIgnoredDuringExecution:

 - weight: 1

 preference:

 matchExpressions:

 - key: karpenter.sh/capacity-type

 operator: In

 values: [spot]

Karpenter will respect this requirement

Karpenter will treat this as a requirement, but the scheduler will
still treat this as a preference

Handling Bin Packing When Time-slicing

spec:

 affinity:

 podAffinity:

 preferredDuringSchedulingIgnoredDuringExecution:

 - labelSelector:

 matchExpressions:

 - key: app

 operator: In

 values: [my-app]

 topologyKey: kubernetes.io/hostname

 weight: 100

Q&A Time

