Scaling Observability
with Loki at Dropbox

Alok Ranjan & Paul Shen

Agenda

) Introduction & Context

Observability Challenges at Dropbox

Evaluation of Logging Solutions

Why Grafana Loki?

Deep Dive into Loki’s Architecture

Operational and Scaling Challenges

Integration with Dropbox Infrastructure
& Cost Optimizations

Conclusion & Q&A

Alok Ranjan

Engineering Manager, Storage Platform

e Master's from Carnegie Mellon University

e Prior experience: Big Switch Networks,
VMware, Cisco

e Focus: Storage systems, scalable
infrastructure, Telemetry

e Interested in AI/ML infrastructure challenges

Paul Shen

Software Engineer, Logging Integration

Tracing (LIT) Team

e Work: Deploying Grafana stack, Traces,

Profiles

e Personal: ergonomic computer interfaces -

terminal apps, LLM chat and voice-to-text,

XR glasses

Dropbox

e Founded in 2007

e 700+ million users

e 18+ million paying users
e 1 T+ pieces of content

e Billions of files uploaded per day

Incident Triage Workflow

e Detection & Alerting: Automated alerts signal anomalies.

e Dashboard Metrics: Review key metrics for a high-level view.

e Log Analysis: Dig into logs for detailed error context.

e Distributed Tracing: Follow request flows to pinpoint root causes.

e Resolution: Implement fixes and validate the remediation.

Unstructured Logs

e Raw Data: Logs without a defined schema.
e Sources: From first-party code & third-party debug files (e.g., /var/log/dropbox).
e Contrast: Unlike structured logs (e.g., Hive records, traces)

e Use Case: Real-time troubleshooting.

Problem Statement

Unstructured logs stored in /var/logs/

ssh individual box

Host rotated in 7 days

Migration from standalone hosts to containers

Containers are ephemeral

High-Level Requirements

e Provide a secure, ergonomic interface for analyzing unstructured logs
e Replace manual, on-host SSH log analysis for production service owners
e |ngest the complete firehose of DBX production logs without modifying application code

e Lay the groundwork for future integration with logs from acquisitions and corporate assets

Reliability Requirements

e Retention: Maintain logs for at least 1 week
e Throughput: Support up to 150TB/day of log data
e Latency: Achieve p99 ingestion latency within 30 seconds and query latency under 10 seconds

e Availability: Ensure 99% of log records are reliably stored and accessible

Security Requirements

e Enforce deny-by-default mTLS across all endpoints
e |Implement strict access segmentation by service ownership with audited privilege delegation
e Encrypt log storage at rest using robust key management

e [ntegrate PIl detection, filtering, and redaction at both ingress and query stages

Non Goals

e Log Format: Don’t mandate changes
e Observability: Not going to replace structured logging/tracing/metrics
e Analytics: Not for batch or historical analysis

e Enforcement: No mandated logging practices

Evaluation Metrics for Logging
Solutions

e Cost: Total cost of ownership (OpEx/CapEx, contract risks)

e Performance: Ingestion rates, query latency & scalability

e UX & Query: Rich query engine, familiar Grafana integration

e Integration: Ease of connecting with existing observability tools

e Security: Data protection, sensitive data exposure risk

Do Nothing (Status Quo)

e Overview: Continue existing SSH-based log analysis
e Pros: No additional investment
e Cons: Manual, non-scalable, inefficient troubleshooting

e QOutcome: Inadequate for modern observability needs

Evaluation of Logging Services

Solution

Overview

Pros

Cons

Outcome

Externally Managed
SaaS

Fully managed logging
service by a third

or-1ayY

Reduces in-house
management
overhead

High annual cost;
potential security risks

Rejected due to cost
and security concerns

Managed Cloud

Managed search and
logging on a cloud

Mature, scalable

Higher operational
costs; complex

Not cost-effective; UX

Logain technolo configuration affectin challenges
99Ing framework 9y J J J
UX

Enterprise-grade lo . Expensive licensin Too costly and

Self-Hosted P J J Rich feature set;: P . J y
: management and infrastructure cumbersome for our

Enterprise . robust vendor support

on-premise demands scale

Build Your Own
Logging

Custom-developed
solution

Full control; tailored
features

High engineering
effort; slow
time-to-value

Not viable given rapid
open-source
advances

Grafana Loki

e Cost-effective: Open-source, low TCO
e High-Performance: Optimized for DBX-scale log ingestion and querying
e Grafana Integration: Native, unified observability interface

e Scalable Architecture: Distributed components

Why did we pick Loki: Evaluating
Alternatives

e Build vs Buy: Building a new log analysis engine unlikely to make sense given mature observability sector

e SaaS vs self-hosted: SaaS was hugely disadvantaged by
o Cost

o Security

o Integration Challenges

e |ndex complexity: full text index(esearchd) vs metadata index(loki) vs no index(BFS)

e Loki: a sweet spot in the cost vs UX tradeoff

What is Loki?

e Apache 2.0 licensed

e Horizontally scalable

e Highly Available

e Multi tenant

e Prometheus inspired

e | 0og aggregation System

Why did we pick Loki: Other things
we Liked

e Query model conceptually similar to our metrics query language V2

e Active community

e Implemented in golang so easy to patch

e Integrated/Core Grafana UX

e Backed by S3

e Scalable architecture

Architecture

Loki Scalability

Does not indexes the text of the log

Loki iIndexes metadata

It groups log entries into streams and indexes labels

Faster ingestion and queries with minimal infrastructure

Logs

2025-02-01T09:02:03.123456789Z {service="dummy_service”, node_id="ex_node_1"} GET /about

Timestamp Prometheus-style Labels Content
With nanosecond precision Key-value pairs Log line

Logs - Stream

A log stream is stream of log entries with exact same label set

2025-02-01109:02:03.000Z
2025-02-01109:02:04.000Z
2025-02-01109:02:06.000Z

2025-02-01109:02:03.000Z
2025-02-01109:02:03.000Z
2025-02-01109:02:03.000Z

{serv
{serv
{serv

ice="dummy_serv
ice="dummy_serv
ice="dummy_serv

ice”, node_id="ex_node_1"}
ice”, node_id="ex_node_1"}
ice”, node_id="ex_node_1"}

{service="dummy_service”, node_id="ex_node 2"}

{serv
{serv

ice="dummy_serv
ice="dummy_serv

ice”, node_id="ex_node_2"}
ice”, node_id="ex_node_2"}

GET /about

GET /

GET /help

GET /fi
GET /fi
GET /fi

es/1
es/2
es/1

Logs Storage - Chunks

e Streams are stored in separate chunks
e Sorted in timestamp order
e Chunks are filled till they reach a target size or timeout

e Once full, they’re compressed and flushed to Object Store

chunk #1 {service="dummy_service”, node_id="ex_node_1"}

2025-02-01T7T09:02:03.000Z GET /about
2025-02-01T7T09:02:04.000Z GET/
2025-02-01T09:02:06.000Z GET /help

Logs - Query
Log Stream Chunks

{service="dummy_service”, node_id="ex_node_1"}

{service="dummy_service”, node_id="ex_node_2"}

Logs - Query
Log Stream Chunks

{service="dummy_service”, node_id="ex_node_1"}

Query: {service="dummy_service”} start=T5 end=T7

{service="dummy_service”, node_id="ex_node_2"}

Dropbox-specific LoKI

Lokl Architecture

Write Path Read Path

—
: Memcaches

Grafana loki |
Distributor Query

Frontend
|

C 5 ;
Ingester — Q - Querier ==
. : ' C

- — " Mo o

R - Results

C - Chunks

Cluster Services

Compactor

Object Store (S3/GCP/Minl0/..)

'

/write data flow

Loki at Dropbox: At a Glance

e ~10 GB/s logs processed
e 30 days of logs == ~10 petabytes stored in object storage
e ~1000 tenants

e <1 query per second

Multitenancy

e Lokiisolates access and storage by tenant
e At Dropbox, tenant is a service (group of projects)

e One service with large log volume had to be split up by project

Auth: What?

e Before, engineers would use a production access permission for their service to SSH onto the service’s hosts to view logs

e Service == tenant aligns with previous permission model

e Some global services are accessible by everyone

Auth: Who?

e Use existing production access permission to authorize logs too

e New group permission to grant log access to a service

e Some teams have access to all logs

Auth: How?

e Custom query auth proxy that does permission lookup on user

e Grafana RBAC would’ve required a datasource per tenant/service and upgrade to enterprise

Auth: Sharing Challenges

e [eam A wants to share access for their service’s logs to Team B
e [eam B must request permission to the service logs for their group
e Because the permission is owned by the logging team, only we can approve

e During an incident, this delay can be costly

Auth: Breakglass

e Breakglass allows a user with a justified reason to gain temporary access to any service’s logs

e Audit trail and safeguards in place

Multi-homing

e Run Loki in two data centers in separate geographic regions

e Same object storage is used in both regions

e Logs and queries are routed to the distributor and query frontend in the active region using a DNS server that caches Dropbox
load balancer data

Multi-homing: Failover Steps

e Shift weights to the other region in load balancer global 3
COnfig | Write Path Read Path

Grafana loki l sl ail
Distributor Fr?)ﬁ:xd
e After query traffic shifts to the new region, last hour of logs ﬂ R - Results
will be missing because they aren’t cached in new ingesters

| - Index

or flushed to object storage ingester & Q - Querier S

- Chunks
e Restart old ingesters ASAP to flush logs to object storage o

Cluster Services

e Restart query results memcache cluster in the new region to
pull in flushed logs

Compactor

Chunks
etcd

Object Store (S3/GCP/Minl0/..)

'

e Deactivate old compactor and activate compactor in new jwrite data flow
region

S3 Replacement

e Use internal object storage as drop-in replacement for S3 to save costs, especially data transfer cost
e |ower costs — Log retention increase from 1 to 4 weeks
e Performance characteristics are different

o S3 gradually scales out reads vs. reserved capacity on-prem

o Large index files still written to S3

Scaling Challenges

Ingester WAL

e Write Ahead Log stored on ingesters' disks
e Used to recover logs when ingester exits before flushing

e At Dropbox, disabled to prioritize availability over durabillity

Per-tenant Ingestion Rate Limits

e Set conservative default rate limits

e Alert notifies service owners when their service hit rate limits
e Allow tenants to override rate limits in a file

e Distribute file to Loki components using distributed KV store

e Reload Loki runtime config file with new rate limits

Hash Ring

e |ngesters shard log streams and own a range in the hash ring
e |ngester registers their range and health status in the ring stored in a distributed KV store

e Distributor uses ring to route log stream to ingester + replicate to other ingesters

Ingester Hash Ring Example

2025-02-01T09:02:03.000Z {service="dummy_service”, node_id="ex_node_1"} | GET /about

| 1 |

ac965cd7’

Distributor -> Ingesters

Ea — Em ==

e~

[A

Hash Ring: etcd

e \We original used etcd as backing KV store for Loki hash ring
e ectcd: distributed, consistent KV store
e Often used for coordination and configuration, default for k8s

e Now widely used at Dropbox

Hash Ring: etcd Write Contention

Each ingester sends a heartbeat every minute and updates the ring

When an ingester joins/leaves the ring, it updates the ring

etcd has a single key for the whole ring stored as a binary blob

Each ring update is read + CAS (compare-and-swap) to replace the ring

RF=3 and 67 ingesters for each replication factor is 201 total ingesters

Hash Ring: etcd Issues

e Deployments take hours, ingesters are pushed one at a time
e Availability alert would often trigger and fail the ingester pushes

e Single point of failure: etcd going down caused outages

Hash Ring: Migrate from etcd to
memberlist

memberlist

e Now default in Loki and other Grafana projects
e Peer-to-peer gossip protocol
e Each update is only the delta, not the entire ring

e Eventually consistent

Hash Ring: memberlist Pros

e No write contention
e No single point of failure
e No issues in the last year using memberlist

e Able to scale out ingesters by 2x afterwards

Index: BoltDB — TSDB

e Log indexes determine query plan: how many log chunks to fetch
e |ndex format changed from BoltDB to TSDB

e [SDB based on Prometheus TSDB, ideal for labels

e Much better query performance after migration

Thank You

Alok Linkedin Paul Linkedin

