
Alok Ranjan & Paul Shen

Scaling Observability
with Loki at Dropbox

0501 Introduction & Context Deep Dive into Loki’s Architecture

0602 Observability Challenges at Dropbox Operational and Scaling Challenges

0703 Evaluation of Logging Solutions Integration with Dropbox Infrastructure
& Cost Optimizations

0804 Why Grafana Loki? Conclusion & Q&A

Agenda

Alok Ranjan
Engineering Manager, Storage Platform

● Master's from Carnegie Mellon University

● Prior experience: Big Switch Networks,

VMware, Cisco

● Focus: Storage systems, scalable

infrastructure, Telemetry

● Interested in AI/ML infrastructure challenges

Paul Shen
Software Engineer, Logging Integration

Tracing (LIT) Team

● Work: Deploying Grafana stack, Traces,

Profiles

● Personal: ergonomic computer interfaces -

terminal apps, LLM chat and voice-to-text,

XR glasses

● Founded in 2007

● 700+ million users

● 18+ million paying users

● 1 T+ pieces of content

● Billions of files uploaded per day

Dropbox

● Detection & Alerting: Automated alerts signal anomalies.

● Dashboard Metrics: Review key metrics for a high-level view.

● Log Analysis: Dig into logs for detailed error context.

● Distributed Tracing: Follow request flows to pinpoint root causes.

● Resolution: Implement fixes and validate the remediation.

Incident Triage Workflow

Unstructured Logs

● Raw Data: Logs without a defined schema.

● Sources: From first-party code & third-party debug files (e.g., /var/log/dropbox).

● Contrast: Unlike structured logs (e.g., Hive records, traces)

● Use Case: Real-time troubleshooting.

● Unstructured logs stored in /var/logs/

● ssh individual box

● Host rotated in 7 days

● Migration from standalone hosts to containers

● Containers are ephemeral

Problem Statement

● Provide a secure, ergonomic interface for analyzing unstructured logs

● Replace manual, on-host SSH log analysis for production service owners

● Ingest the complete firehose of DBX production logs without modifying application code

● Lay the groundwork for future integration with logs from acquisitions and corporate assets

High-Level Requirements

● Retention: Maintain logs for at least 1 week

● Throughput: Support up to 150TB/day of log data

● Latency: Achieve p99 ingestion latency within 30 seconds and query latency under 10 seconds

● Availability: Ensure 99% of log records are reliably stored and accessible

Reliability Requirements

Security Requirements

● Enforce deny-by-default mTLS across all endpoints

● Implement strict access segmentation by service ownership with audited privilege delegation

● Encrypt log storage at rest using robust key management

● Integrate PII detection, filtering, and redaction at both ingress and query stages

Non Goals

● Log Format: Don’t mandate changes

● Observability: Not going to replace structured logging/tracing/metrics

● Analytics: Not for batch or historical analysis

● Enforcement: No mandated logging practices

Evaluation Metrics for Logging
Solutions
● Cost: Total cost of ownership (OpEx/CapEx, contract risks)

● Performance: Ingestion rates, query latency & scalability

● UX & Query: Rich query engine, familiar Grafana integration

● Integration: Ease of connecting with existing observability tools

● Security: Data protection, sensitive data exposure risk

Do Nothing (Status Quo)

● Overview: Continue existing SSH-based log analysis

● Pros: No additional investment

● Cons: Manual, non-scalable, inefficient troubleshooting

● Outcome: Inadequate for modern observability needs

Evaluation of Logging Services
Solution Overview Pros Cons Outcome

Externally Managed
SaaS

Fully managed logging
service by a third
party

Reduces in-house
management
overhead

High annual cost;
potential security risks

Rejected due to cost
and security concerns

Managed Cloud
Logging

Managed search and
logging on a cloud
framework

Mature, scalable
technology

Higher operational
costs; complex
configuration affecting
UX

Not cost-effective; UX
challenges

Self-Hosted
Enterprise

Enterprise-grade log
management
on-premise

Rich feature set;
robust vendor support

Expensive licensing
and infrastructure
demands

Too costly and
cumbersome for our
scale

Build Your Own
Logging

Custom-developed
solution

Full control; tailored
features

High engineering
effort; slow
time-to-value

Not viable given rapid
open-source
advances

Grafana Loki

● Cost-effective: Open-source, low TCO

● High-Performance: Optimized for DBX-scale log ingestion and querying

● Grafana Integration: Native, unified observability interface

● Scalable Architecture: Distributed components

Why did we pick Loki: Evaluating
Alternatives
● Build vs Buy: Building a new log analysis engine unlikely to make sense given mature observability sector

● SaaS vs self-hosted: SaaS was hugely disadvantaged by
○ Cost

○ Security

○ Integration Challenges

● Index complexity: full text index(esearchd) vs metadata index(loki) vs no index(BFS)

● Loki: a sweet spot in the cost vs UX tradeoff

What is Loki?

● Apache 2.0 licensed

● Horizontally scalable

● Highly Available

● Multi tenant

● Prometheus inspired

● Log aggregation System

Why did we pick Loki: Other things
we Liked
● Query model conceptually similar to our metrics query language V2

● Active community

● Implemented in golang so easy to patch

● Integrated/Core Grafana UX

● Backed by S3

● Scalable architecture

Architecture

● Does not indexes the text of the log

● Loki indexes metadata

● It groups log entries into streams and indexes labels

● Faster ingestion and queries with minimal infrastructure

Loki Scalability

Logs
2025-02-01T09:02:03.123456789Z {service=”dummy_service”, node_id=”ex_node_1”} GET /about

Timestamp
With nanosecond precision

Prometheus-style Labels
Key-value pairs

Content
Log line

Logs - Stream

A log stream is stream of log entries with exact same label set

 2025-02-01T09:02:03.000Z {service=”dummy_service”, node_id=”ex_node_1”} GET /about
 2025-02-01T09:02:04.000Z {service=”dummy_service”, node_id=”ex_node_1”} GET /
 2025-02-01T09:02:06.000Z {service=”dummy_service”, node_id=”ex_node_1”} GET /help

 2025-02-01T09:02:03.000Z {service=”dummy_service”, node_id=”ex_node_2”} GET /files/1
 2025-02-01T09:02:03.000Z {service=”dummy_service”, node_id=”ex_node_2”} GET /files/2
 2025-02-01T09:02:03.000Z {service=”dummy_service”, node_id=”ex_node_2”} GET /files/1

Logs Storage - Chunks

● Streams are stored in separate chunks

● Sorted in timestamp order

● Chunks are filled till they reach a target size or timeout

● Once full, they’re compressed and flushed to Object Store

2025-02-01T09:02:03.000Z GET /about
2025-02-01T09:02:04.000Z GET /
2025-02-01T09:02:06.000Z GET /help

chunk #1 {service=”dummy_service”, node_id=”ex_node_1”}

Logs - Query

{service=”dummy_service”, node_id=”ex_node_1”}

{service=”dummy_service”, node_id=”ex_node_2”}

Log Stream Chunks

T1-T5

T6-T8

T9-T12

T1-T3

T4-T6

T7-T12

Logs - Query

{service=”dummy_service”, node_id=”ex_node_1”}

{service=”dummy_service”, node_id=”ex_node_2”}

Log Stream Chunks

T1-T5

T9-T12

T6-T8

T1-T3

T4-T6

T7-T12

Query: {service=”dummy_service”} start=T5 end=T7

Dropbox-specific Loki

Loki Architecture

● ~10 GB/s logs processed

● 30 days of logs == ~10 petabytes stored in object storage

● ~1000 tenants

● <1 query per second

Loki at Dropbox: At a Glance

●

● Loki isolates access and storage by tenant

● At Dropbox, tenant is a service (group of projects)

● One service with large log volume had to be split up by project

Multitenancy

● Before, engineers would use a production access permission for their service to SSH onto the service’s hosts to view logs

● Service == tenant aligns with previous permission model

● Some global services are accessible by everyone

Auth: What?

● Use existing production access permission to authorize logs too

● New group permission to grant log access to a service

● Some teams have access to all logs

Auth: Who?

● Custom query auth proxy that does permission lookup on user

● Grafana RBAC would’ve required a datasource per tenant/service and upgrade to enterprise

Auth: How?

● Team A wants to share access for their service’s logs to Team B

● Team B must request permission to the service logs for their group

● Because the permission is owned by the logging team, only we can approve

● During an incident, this delay can be costly

Auth: Sharing Challenges

● Breakglass allows a user with a justified reason to gain temporary access to any service’s logs

● Audit trail and safeguards in place

Auth: Breakglass

● Run Loki in two data centers in separate geographic regions

● Same object storage is used in both regions

● Logs and queries are routed to the distributor and query frontend in the active region using a DNS server that caches Dropbox
load balancer data

Multi-homing

● Shift weights to the other region in load balancer global
config

● After query traffic shifts to the new region, last hour of logs
will be missing because they aren’t cached in new ingesters
or flushed to object storage

● Restart old ingesters ASAP to flush logs to object storage

● Restart query results memcache cluster in the new region to
pull in flushed logs

● Deactivate old compactor and activate compactor in new
region

Multi-homing: Failover Steps

● Use internal object storage as drop-in replacement for S3 to save costs, especially data transfer cost

● Lower costs → Log retention increase from 1 to 4 weeks

● Performance characteristics are different

○ S3 gradually scales out reads vs. reserved capacity on-prem

○ Large index files still written to S3

S3 Replacement

Scaling Challenges

● Write Ahead Log stored on ingesters' disks

● Used to recover logs when ingester exits before flushing

● At Dropbox, disabled to prioritize availability over durability

Ingester WAL

● Set conservative default rate limits

● Alert notifies service owners when their service hit rate limits

● Allow tenants to override rate limits in a file

● Distribute file to Loki components using distributed KV store

● Reload Loki runtime config file with new rate limits

Per-tenant Ingestion Rate Limits

● Ingesters shard log streams and own a range in the hash ring

● Ingester registers their range and health status in the ring stored in a distributed KV store

● Distributor uses ring to route log stream to ingester + replicate to other ingesters

Hash Ring

2025-02-01T09:02:03.000Z {service=”dummy_service”, node_id=”ex_node_1”} GET /about

Ingester Hash Ring Example

a6965cd7

● We original used etcd as backing KV store for Loki hash ring

● etcd: distributed, consistent KV store

● Often used for coordination and configuration, default for k8s

● Now widely used at Dropbox

Hash Ring: etcd

● Each ingester sends a heartbeat every minute and updates the ring

● When an ingester joins/leaves the ring, it updates the ring

● etcd has a single key for the whole ring stored as a binary blob

● Each ring update is read + CAS (compare-and-swap) to replace the ring

● RF=3 and 67 ingesters for each replication factor is 201 total ingesters

Hash Ring: etcd Write Contention

● Deployments take hours, ingesters are pushed one at a time

● Availability alert would often trigger and fail the ingester pushes

● Single point of failure: etcd going down caused outages

Hash Ring: etcd Issues

● Now default in Loki and other Grafana projects

● Peer-to-peer gossip protocol

● Each update is only the delta, not the entire ring

● Eventually consistent

Hash Ring: Migrate from etcd to
memberlist
memberlist

● No write contention

● No single point of failure

● No issues in the last year using memberlist

● Able to scale out ingesters by 2x afterwards

Hash Ring: memberlist Pros

● Log indexes determine query plan: how many log chunks to fetch

● Index format changed from BoltDB to TSDB

● TSDB based on Prometheus TSDB, ideal for labels

● Much better query performance after migration

Index: BoltDB → TSDB

Thank You
Paul LinkedinAlok Linkedin

