
© 2024 eBay. All rights reserved. Confidential and proprietary.

Exemplars - A Tale Of Pillars Supporting
The Observability Structure

Vijay Samuel - Principal MTS, Architect
Jing Hu - Sr. Software Engineer

© 2024 eBay. All rights reserved. Confidential and proprietary.

Pillars Of Observability

© 2024 eBay. All rights reserved. Confidential and proprietary.

M.E.L.T

3

● Metrics

● Events

● Logs

● Tracing

© 2024 eBay. All rights reserved. Confidential and proprietary.

In The Beginning…

4

© 2024 eBay. All rights reserved. Confidential and proprietary.

In the beginning…

5

● Easy to generate

● Derive other forms of telemetry from it

● The more you spit out, the more you can learn

about what's going on

© 2024 eBay. All rights reserved. Confidential and proprietary. 6

2022-03-14 12:05:23.567 [INFO] User login successful for username "johndoe" from IP

address 192.168.0.1

2022-03-14 12:10:45.123 [ERROR] Unable to connect to database. Error code: 500

2022-03-14 12:15:09.876 [DEBUG] Request received for endpoint "/api/v1/users" with query

parameter "search=John"

2022-03-14 12:20:30.234 [INFO] Successfully processed 100 records in 2.5 seconds

2022-03-14 12:25:47.890 [WARN] Disk space usage is above 90%. Consider freeing up some

space to avoid issues.

© 2024 eBay. All rights reserved. Confidential and proprietary.

Log Volumes Grew

7

● More microservices ←→ More logs

● String processing burns CPU

● Easy to instrument - hard to make sense at scale

© 2024 eBay. All rights reserved. Confidential and proprietary.

Then We Tried Adding
Structure…

8

● Parsed using predefined patterns on “highly

structured logs” or “events”

● Stored in columnar databases

● Supports “infinite” cardinality

● Allows ad-hoc OLAP style queries

● Simple to onboard - more powerful than plain old

logs

Apache Access Logs

127.0.0.1 - - [16/Apr/2023:10:15:45 +0000] "GET /index.html HTTP/1.1" 200 876 10

127.0.0.1 - - [16/Apr/2023:10:16:02 +0000] "POST /submit_form HTTP/1.1" 302 0 5

192.168.1.1 - - [16/Apr/2023:10:16:45 +0000] "GET /images/logo.png HTTP/1.1" 304 0 3

remotehost rfc931 authuser [date] "request" status bytes responsetime_ms

FAQs

● Total number of GET request - 2
● Average request latency from 127.0.0.1 -

7.5ms
● Total number of requests - 3
● Total number of requests that were 2xx - 1

© 2024 eBay. All rights reserved. Confidential and proprietary.

Some Problems Just
Don’t Go Away

10

● CPU burn kills 5 engineers every year *

● Can become cost prohibitive at scale regardless

how useful those debug logs are

* made that up

© 2024 eBay. All rights reserved. Confidential and proprietary.

And Then Came Metrics…

11

● Numerical measurements

● Source instrumented

● Represented as time series

● Stored in optimized time series databases

● Aggregatable across time and space (cheaper)

Apache Metrics
Count of HTTP requests by method, path, and status code

http_requests_total{method="GET", path="/foo/bar", status_code="200"} 1

http_requests_total{method="GET", path="/baz/qux", status_code="404"} 2

http_requests_total{method="POST", path="/foo/bar", status_code="200"} 1

HTTP request duration histogram by method, path, and status code

http_request_duration_seconds_bucket{method="GET", path="/foo/bar",

status_code="200", le="0.005"} 0

http_request_duration_seconds_bucket{method="GET", path="/foo/bar",

status_code="200", le="0.01"} 1

http_request_duration_seconds_bucket{method="GET", path="/foo/bar",

status_code="200", le="+Inf"} 1

http_request_duration_seconds_sum{method="GET", path="/foo/bar",

status_code="200"} 0.0075

http_request_duration_seconds_count{method="GET", path="/foo/bar",

status_code="200"} 1

FAQs

● Total number of GET request - 2
● Average request latency from 127.0.0.1 -

7.5ms
● Total number of requests - 3
● Total number of requests that were 2xx - 1
● 99.9th percentile of request latencies - ???

© 2024 eBay. All rights reserved. Confidential and proprietary.

He Who Shall Not Be
Named…

13

● TSDBs suffer from cardinality restrictions

● High cardinality → slow queries

● High cardinality → higher in-memory costs

© 2024 eBay. All rights reserved. Confidential and proprietary.

Now We Have Tracing…

14

● How did my the 10s of microservices behave as

my request flowed through each of them?

● How do all my microservices tie together as a

dependency graph?

Make M.E.L.T Meld!

© 2024 eBay. All rights reserved. Confidential and proprietary. 15

© 2024 eBay. All rights reserved. Confidential and proprietary.

Why Do That?

16

● Individual pillars by themselves aren’t

“Observable”

● Traversal across pillars is essential

● Promotes better questioning of the data

© 2024 eBay. All rights reserved. Confidential and proprietary.

Tracing ❤ Logs

17

● Interoperability baked in by design

● Trace IDs and Span IDs emitted as part of every

trace and logs

● Allows to jump between logs and traces in both

directions

● Ensure logs are sampled along with traces

© 2024 eBay. All rights reserved. Confidential and proprietary.

But What About Metrics

18

● Structured events can have measurements

● Span Events can also have measurements

● Can I store Trace IDs as metric labels?

© 2024 eBay. All rights reserved. Confidential and proprietary.

Enter Exemplars

© 2024 eBay. All rights reserved. Confidential and proprietary.

What Are They?

20

Recorded value that associates

OpenTelemetry context to a metric event

within a Metric

○ trace_id, span_id

○ recorded value

○ timestamp of observation

http_request_duration_seconds_bucket{method="GET", path="/foo/bar", status_code="200",

le="0.01"} 1

http_request_duration_seconds_bucket{method="GET", path="/foo/bar", status_code="200",

le="0.01"} 1 # {trace_id="120387341874", span_id="31498365"} 0.008 15209746.56

© 2024 eBay. All rights reserved. Confidential and proprietary.

Why Are They Useful?

21

● Promotes full interoperability within all 4 pillars

○ metric ←→ trace ←→ log/event

● Ease of transition from aggregation to individual

measurement

○ 90th percentile request latency → trace of

a request with value higher than 90th

© 2024 eBay. All rights reserved. Confidential and proprietary.

How Can I Use Them?

22

● Instrumentation - OTEL SDK, Prometheus Client

○ OTLP

○ OpenMetrics exposition

● Storage - Prometheus

○ In memory ring buffer based

○ Capped by maximum number of

exemplars that can be stored

© 2024 eBay. All rights reserved. Confidential and proprietary.

Use Exemplars Wisely!

© 2024 eBay. All rights reserved. Confidential and proprietary.

Sample Efficiently

24

● Tail sampling is hard on OTEL Collector

○ Traffic from all sources need to be

funneled into single instance

○ In memory sampling is expensive

● Tail sampling is easier on storage

○ Simpler to execute SELECT…INSERT

queries

● Clients pick Exemplars as a representation of the

source

○ Could it determine a true representative

sample space?

© 2024 eBay. All rights reserved. Confidential and proprietary.

Exemplar Based Tail Sampling

25

Tracing OTEL Collectors

Metrics OTEL Collectors

Ingest

Metric Ingest

Tracestore

raw traces

sampled traceids

sampled traces

Span metric processor

Metric Aggregator Metricstore

Tail sampler ingest

Tail sampler job

© 2024 eBay. All rights reserved. Confidential and proprietary.

Keep Them Around
Longer

26

● Exemplars on Prometheus have a shorter shelf

life

● Showing Exemplars (sampled traces) on graphs

for the life of the trace is useful!

● Tracestore already retains harvested Exemplars

○ Maybe serve them via query_exemplars

API?

© 2024 eBay. All rights reserved. Confidential and proprietary.

ClickHouse Based Exemplar
Storage

© 2024 eBay. All rights reserved. Confidential and proprietary.

Easier Said Than Done!

28

● Prometheus is blazing fast!

○ Can not slow down dashboard rendering

● SELECT * and columnar databases don’t agree

with each other

● Different table schemas have different

performance characteristics

© 2024 eBay. All rights reserved. Confidential and proprietary.

Attempt 1 - Flat Table

29

CREATE TABLE exemplars

(

 "traceid" String CODEC(ZSTD(1)),

 "spanid" String CODEC(ZSTD(1)),

 "timestamp" DateTime CODEC(Delta(4), LZ4),

 "value" Float64 CODEC(Gorilla, ZSTD(1)),

 "label_keys" Array(LowCardinality(String)) CODEC(ZSTD(1)),

 "label_values" Array(String) CODEC(ZSTD(9)),

 "Exemplar.label_keys" Array(LowCardinality(String))

CODEC(ZSTD(1)),

 "Exemplar.label_values" Array(String) CODEC(ZSTD(9))

)

ENGINE = ReplacingMergeTree

PARTITION BY toYYYYMMDD(toStartOfHour(timestamp))

ORDER BY (timestamp, traceid)

TTL timestamp + toIntervalDay(14)

SETTINGS index_granularity = 8192, ttl_only_drop_parts = 1

© 2024 eBay. All rights reserved. Confidential and proprietary.

Some Observations

30

● Lot of time spent on filtering based on label key

and label values

● Regexes are slow

● LIMIT the number of responses speeds things

up. But the sample space is skewed towards the

most recent Exemplars

© 2024 eBay. All rights reserved. Confidential and proprietary.

Attempt 2 - Two Tables

31

CREATE TABLE default.exemplars

(

 "hashid" UInt64 CODEC(T64, ZSTD(1)),

 "timestamp" DateTime CODEC(Delta(4), LZ4),

 "__name__" String CODEC(ZSTD(1)),

 "_namespace_" String CODEC(ZSTD(1)),

 "value" Float64 CODEC(Gorilla, ZSTD(1)),

 "label_keys" Array(LowCardinality(String))

CODEC(ZSTD(1)),

 "label_values" Array(String) CODEC(ZSTD(9)),

 "Exemplar.labels" Map(LowCardinality(String),

String) CODEC(ZSTD(1)),

)

ENGINE = MergeTree()

PARTITION BY toYYYYMMDD(timestamp)

ORDER BY (timestamp, __name__, hashid)

CREATE TABLE default.exemplar_metadata

(

 "key" LowCardinality(String)

CODEC(ZSTD(1)),

 "value" String CODEC(ZSTD(1)),

 "hashid" UInt64 CODEC(T64, ZSTD(1)),

 "timestamp" DateTime DEFAULT now()

CODEC(Delta(4), LZ4)

)

ENGINE = MergeTree()

PARTITION BY toYYYYMMDD(timestamp)

ORDER BY (key, value, hashid)

© 2024 eBay. All rights reserved. Confidential and proprietary.

Still Not Fast Enough…

32

● Time to filter went down but time to fail on

non-existent metrics/namespaces was

substantially high

○ Not all namespaces had Exemplars at the

time

● Larger the number of Exemplars returned, slower

the response times

© 2024 eBay. All rights reserved. Confidential and proprietary.

Attempt 3 - Add Dictionaries

33

CREATE DICTIONARY

default.exemplar_valid_metrics

(

 "__name__" String,

 "timestamp" DateTime

)

PRIMARY KEY __name__

SOURCE(CLICKHOUSE(QUERY 'select distinct

value as __name__, now() as timestamp from

default.exemplar_metadata where

key=\'__name__\''))

LIFETIME(MIN 0 MAX 300)

LAYOUT(COMPLEX_KEY_HASHED())

CREATE DICTIONARY

default.exemplar_valid_namespaces

(

 "_namespace_" String,

 "timestamp" DateTime

)

PRIMARY KEY _namespace_

SOURCE(CLICKHOUSE(QUERY 'select distinct

value as namespace, now() as timestamp from

default.exemplar_metadata where

key=\'_namespace_\''))

LIFETIME(MIN 0 MAX 300)

LAYOUT(COMPLEX_KEY_HASHED())

© 2024 eBay. All rights reserved. Confidential and proprietary.

It's All In The Querying…

34

● dictGet() queries circuit break pretty fast on

name and namespace

● Use inverted indexes on the exemplar table

○ Apply regexes against exemplar table and

not metadata table

● Sampling before applying LIMIT

○ adjust sample % by time window

○ by hashid

© 2024 eBay. All rights reserved. Confidential and proprietary.

Putting It All Together…

35

SELECT * FROM sherlockio.exemplars

 WHERE timestamp >= 1738751880 AND timestamp <= 1738795080

 AND hashid IN (

 SELECT * FROM (

 SELECT hashid FROM(

 SELECT hashid FROM sherlockio.exemplar_metadata WHERE (timestamp >= 1738751880) AND (key = '_namespace_')

and (value = 'tracing') INTERSECT DISTINCT SELECT hashid FROM sherlockio.exemplar_metadata WHERE (timestamp >=

1738751880) AND (key = 'service_name') and (value = 'foobar') INTERSECT DISTINCT SELECT hashid FROM

sherlockio.exemplar_metadata WHERE (timestamp >= 1738751880) AND (key = 'service_name') and (value = 'foobar')

INTERSECT DISTINCT SELECT hashid FROM sherlockio.exemplar_metadata WHERE (timestamp >= 1738751880) AND (key =

'service_name') and (value = 'foobar') INTERSECT DISTINCT SELECT hashid FROM sherlockio.exemplar_metadata WHERE

(timestamp >= 1738751880) AND (key = 'span_kind') and (value = 'SPAN_KIND_SERVER') INTERSECT DISTINCT SELECT hashid

FROM sherlockio.exemplar_metadata WHERE (timestamp >= 1738751880) AND (key = '__name__') and (value =

'duration_milliseconds')

)

)

 WHERE dictHas(sherlockio.exemplar_valid_namespaces, 'tracing') AND dictHas(sherlockio.exemplar_valid_metrics,

'duration_milliseconds')

)

 AND has(label_keys, 'span_name') AND not match(arrayElement(label_values, indexOf(label_keys, 'span_name')),

'BadCommand) AND has(label_keys, 'span_name')) AND cityHash64(toStartOfFifteenMinutes(timestamp), hashid) % 10 == 0

 LIMIT 1000

 SETTINGS max_execution_time=10.000000

© 2024 eBay. All rights reserved. Confidential and proprietary.

What Did We Gain?

© 2024 eBay. All rights reserved. Confidential and proprietary.

We Can Do Things Better

37

● Embed Exemplars into Alerts and show sample

traces

○ Faster time to triage

○ Automation can look at violating requests

directly

● Longer retention of Exemplars allows better

troubleshooting

● Automated Triage

○ AI agents that look at alerts and the

Exemplars in them to perform

comprehensive troubleshooting

● Enhanced User Experiences

○ Exemplar based latency heat maps

○ Visually simpler to find problematic

requests to triage

© 2024 eBay. All rights reserved. Confidential and proprietary.

We Can Do More In The
Future

38

© 2024 eBay. All rights reserved. Confidential and proprietary.

Questions?

39

© 2024 eBay. All rights reserved. Confidential and proprietary.

Thank You!

