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Pillars Of Observability
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M.E.L.T
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● Metrics

● Events

● Logs

● Tracing
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In The Beginning…
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In the beginning… 
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● Easy to generate

● Derive other forms of telemetry from it

● The more you spit out, the more you can learn 

about what's going on
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2022-03-14 12:05:23.567 [INFO] User login successful for username "johndoe" from IP 

address 192.168.0.1

2022-03-14 12:10:45.123 [ERROR] Unable to connect to database. Error code: 500

2022-03-14 12:15:09.876 [DEBUG] Request received for endpoint "/api/v1/users" with query 

parameter "search=John"

2022-03-14 12:20:30.234 [INFO] Successfully processed 100 records in 2.5 seconds

2022-03-14 12:25:47.890 [WARN] Disk space usage is above 90%. Consider freeing up some 

space to avoid issues.
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Log Volumes Grew
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● More microservices ←→ More logs

● String processing burns CPU

● Easy to instrument - hard to make sense at scale
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Then We Tried Adding 
Structure…
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● Parsed using predefined patterns on “highly 

structured logs” or “events”

● Stored in columnar databases

● Supports “infinite” cardinality

● Allows ad-hoc OLAP style queries

● Simple to onboard - more powerful than plain old 

logs



Apache Access Logs

127.0.0.1 - - [16/Apr/2023:10:15:45 +0000] "GET /index.html HTTP/1.1" 200 876 10

127.0.0.1 - - [16/Apr/2023:10:16:02 +0000] "POST /submit_form HTTP/1.1" 302 0 5

192.168.1.1 - - [16/Apr/2023:10:16:45 +0000] "GET /images/logo.png HTTP/1.1" 304 0 3

remotehost rfc931 authuser [date] "request" status bytes responsetime_ms

FAQs

● Total number of GET request - 2
● Average request latency from 127.0.0.1 - 

7.5ms
● Total number of requests - 3
● Total number of requests that were 2xx - 1
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Some Problems Just 
Don’t Go Away
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● CPU burn kills 5 engineers every year *

● Can become cost prohibitive at scale regardless 

how useful those debug logs are

* made that up
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And Then Came Metrics…
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● Numerical measurements

● Source instrumented

● Represented as time series

● Stored in optimized time series databases

● Aggregatable across time and space (cheaper)



Apache Metrics
# Count of HTTP requests by method, path, and status code

http_requests_total{method="GET", path="/foo/bar", status_code="200"} 1

http_requests_total{method="GET", path="/baz/qux", status_code="404"} 2

http_requests_total{method="POST", path="/foo/bar", status_code="200"} 1

# HTTP request duration histogram by method, path, and status code

http_request_duration_seconds_bucket{method="GET", path="/foo/bar", 

status_code="200", le="0.005"} 0

http_request_duration_seconds_bucket{method="GET", path="/foo/bar", 

status_code="200", le="0.01"} 1

http_request_duration_seconds_bucket{method="GET", path="/foo/bar", 

status_code="200", le="+Inf"} 1

http_request_duration_seconds_sum{method="GET", path="/foo/bar", 

status_code="200"} 0.0075

http_request_duration_seconds_count{method="GET", path="/foo/bar", 

status_code="200"} 1

FAQs

● Total number of GET request - 2
● Average request latency from 127.0.0.1 - 

7.5ms
● Total number of requests - 3
● Total number of requests that were 2xx - 1
● 99.9th percentile of request latencies - ???
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He Who Shall Not Be 
Named…
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● TSDBs suffer from cardinality restrictions

● High cardinality → slow queries

● High cardinality → higher in-memory costs
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Now We Have Tracing…
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● How did my the 10s of microservices behave as 

my request flowed through each of them?

● How do all my microservices tie together as a 

dependency graph?



Make M.E.L.T Meld!
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Why Do That?
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● Individual pillars by themselves aren’t 

“Observable”

● Traversal across pillars is essential

● Promotes better questioning of the data
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Tracing ❤ Logs
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● Interoperability baked in by design

● Trace IDs and Span IDs emitted as part of every 

trace and logs

● Allows to jump between logs and traces in both 

directions

● Ensure logs are sampled along with traces
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But What About Metrics
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● Structured events can have measurements

● Span Events can also have measurements

● Can I store Trace IDs as metric labels?
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Enter Exemplars
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What Are They?
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Recorded value that associates 

OpenTelemetry context to a metric event 

within a Metric

○ trace_id, span_id

○ recorded value

○ timestamp of observation

http_request_duration_seconds_bucket{method="GET", path="/foo/bar", status_code="200", 

le="0.01"} 1

http_request_duration_seconds_bucket{method="GET", path="/foo/bar", status_code="200", 

le="0.01"} 1 # {trace_id="120387341874", span_id="31498365"} 0.008 15209746.56
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Why Are They Useful?
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● Promotes full interoperability within all 4 pillars

○ metric ←→ trace ←→ log/event

● Ease of transition from aggregation to individual 

measurement

○ 90th percentile request latency → trace of 

a request with value higher than 90th
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How Can I Use Them?
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● Instrumentation - OTEL SDK, Prometheus Client

○ OTLP

○ OpenMetrics exposition

● Storage - Prometheus

○ In memory ring buffer based

○ Capped by maximum number of 

exemplars that can be stored
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Use Exemplars Wisely!
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Sample Efficiently
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● Tail sampling is hard on OTEL Collector

○ Traffic from all sources need to be 

funneled into single instance

○ In memory sampling is expensive

● Tail sampling is easier on storage

○ Simpler to execute SELECT…INSERT 

queries

● Clients pick Exemplars as a representation of the 

source

○ Could it determine a true representative 

sample space?
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Exemplar Based Tail Sampling
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Tracing OTEL Collectors

Metrics OTEL Collectors

Ingest

Metric Ingest

Tracestore

raw traces

sampled traceids

sampled traces

Span metric processor

Metric Aggregator Metricstore

Tail sampler ingest

Tail sampler job
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Keep Them Around 
Longer
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● Exemplars on Prometheus have a shorter shelf 

life

● Showing Exemplars (sampled traces) on graphs 

for the life of the trace is useful!

● Tracestore already retains harvested Exemplars

○ Maybe serve them via query_exemplars 

API?
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ClickHouse Based Exemplar 
Storage
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Easier Said Than Done!
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● Prometheus is blazing fast!

○ Can not slow down dashboard rendering

● SELECT * and columnar databases don’t agree 

with each other

● Different table schemas have different 

performance characteristics
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Attempt 1 - Flat Table
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CREATE TABLE exemplars

(

    "traceid" String CODEC(ZSTD(1)),

    "spanid" String CODEC(ZSTD(1)),

    "timestamp" DateTime CODEC(Delta(4), LZ4),

    "value" Float64 CODEC(Gorilla, ZSTD(1)),

    "label_keys" Array(LowCardinality(String)) CODEC(ZSTD(1)),

    "label_values" Array(String) CODEC(ZSTD(9)),

    "Exemplar.label_keys" Array(LowCardinality(String)) 

CODEC(ZSTD(1)),

    "Exemplar.label_values" Array(String) CODEC(ZSTD(9))

)

ENGINE = ReplacingMergeTree

PARTITION BY toYYYYMMDD(toStartOfHour(timestamp))

ORDER BY (timestamp, traceid)

TTL timestamp + toIntervalDay(14)

SETTINGS index_granularity = 8192, ttl_only_drop_parts = 1
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Some Observations
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● Lot of time spent on filtering based on label key 

and label values

● Regexes are slow

● LIMIT the number of responses speeds things 

up. But the sample space is skewed towards the 

most recent Exemplars
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Attempt 2 - Two Tables
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CREATE TABLE default.exemplars

(

   "hashid" UInt64 CODEC(T64, ZSTD(1)),

   "timestamp" DateTime CODEC(Delta(4), LZ4),

   "__name__" String CODEC(ZSTD(1)),

   "_namespace_" String CODEC(ZSTD(1)),

   "value" Float64 CODEC(Gorilla, ZSTD(1)),

   "label_keys" Array(LowCardinality(String)) 

CODEC(ZSTD(1)),

   "label_values" Array(String) CODEC(ZSTD(9)),

   "Exemplar.labels" Map(LowCardinality(String), 

String) CODEC(ZSTD(1)),

)

ENGINE = MergeTree()

PARTITION BY toYYYYMMDD(timestamp)

ORDER BY (timestamp, __name__, hashid)

CREATE TABLE default.exemplar_metadata

(

   "key" LowCardinality(String) 

CODEC(ZSTD(1)),

   "value" String CODEC(ZSTD(1)),

   "hashid" UInt64 CODEC(T64, ZSTD(1)),

   "timestamp" DateTime DEFAULT now() 

CODEC(Delta(4), LZ4)

)

ENGINE = MergeTree()

PARTITION BY toYYYYMMDD(timestamp)

ORDER BY (key, value, hashid)
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Still Not Fast Enough…
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● Time to filter went down but time to fail on 

non-existent metrics/namespaces was 

substantially high

○ Not all namespaces had Exemplars at the 

time

● Larger the number of Exemplars returned, slower 

the response times
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Attempt 3 - Add Dictionaries
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CREATE DICTIONARY 

default.exemplar_valid_metrics

(

   "__name__" String,

   "timestamp" DateTime

)

PRIMARY KEY __name__

SOURCE(CLICKHOUSE(QUERY 'select distinct 

value as __name__, now() as timestamp from 

default.exemplar_metadata where 

key=\'__name__\''))

LIFETIME(MIN 0 MAX 300)

LAYOUT(COMPLEX_KEY_HASHED())

CREATE DICTIONARY 

default.exemplar_valid_namespaces

(

   "_namespace_" String,

   "timestamp" DateTime

)

PRIMARY KEY _namespace_

SOURCE(CLICKHOUSE(QUERY 'select distinct 

value as namespace, now() as timestamp from 

default.exemplar_metadata where 

key=\'_namespace_\''))

LIFETIME(MIN 0 MAX 300)

LAYOUT(COMPLEX_KEY_HASHED())
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It's All In The Querying…
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● dictGet() queries circuit break pretty fast on 

name and namespace

● Use inverted indexes on the exemplar table

○ Apply regexes against exemplar table and 

not metadata table

● Sampling before applying LIMIT

○ adjust sample % by time window

○ by hashid
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Putting It All Together…
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SELECT * FROM sherlockio.exemplars

    WHERE timestamp >= 1738751880 AND timestamp <= 1738795080

    AND hashid IN (

        SELECT * FROM (

        SELECT hashid FROM(

            SELECT hashid FROM sherlockio.exemplar_metadata WHERE (timestamp >= 1738751880) AND (key = '_namespace_') 

and (value = 'tracing') INTERSECT DISTINCT SELECT hashid FROM sherlockio.exemplar_metadata WHERE (timestamp >= 

1738751880) AND (key = 'service_name') and (value = 'foobar') INTERSECT DISTINCT SELECT hashid FROM 

sherlockio.exemplar_metadata WHERE (timestamp >= 1738751880) AND (key = 'service_name') and (value = 'foobar') 

INTERSECT DISTINCT SELECT hashid FROM sherlockio.exemplar_metadata WHERE (timestamp >= 1738751880) AND (key = 

'service_name') and (value = 'foobar') INTERSECT DISTINCT SELECT hashid FROM sherlockio.exemplar_metadata WHERE 

(timestamp >= 1738751880) AND (key = 'span_kind') and (value = 'SPAN_KIND_SERVER') INTERSECT DISTINCT SELECT hashid 

FROM sherlockio.exemplar_metadata WHERE (timestamp >= 1738751880) AND (key = '__name__') and (value = 

'duration_milliseconds')

        )

        )

     WHERE dictHas(sherlockio.exemplar_valid_namespaces, 'tracing') AND dictHas(sherlockio.exemplar_valid_metrics, 

'duration_milliseconds')

    )

     AND has(label_keys, 'span_name') AND not match(arrayElement(label_values, indexOf(label_keys, 'span_name')), 

'BadCommand) AND has(label_keys, 'span_name')) AND cityHash64(toStartOfFifteenMinutes(timestamp), hashid) % 10 == 0

    LIMIT 1000

    SETTINGS max_execution_time=10.000000
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What Did We Gain?
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We Can Do Things Better
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● Embed Exemplars into Alerts and show sample 

traces 

○ Faster time to triage

○ Automation can look at violating requests 

directly

● Longer retention of Exemplars allows better 

troubleshooting



● Automated Triage

○ AI agents that look at alerts and the 

Exemplars in them to perform 

comprehensive troubleshooting

● Enhanced User Experiences

○ Exemplar based latency heat maps

○ Visually simpler to find problematic 

requests to triage
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We Can Do More In The 
Future
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Questions?
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Thank You!


