Evolving Al Research
Infrastructure with
Kubernetes at Meta

Scale 22x

Shaun Hopper Chandan Avdhut

Production Engineer Production Engineer 00 Met(]

Introductions

Shaun Hopper

S e
LA .

e Who we are =N

e We supportinstance level compute for all A
of Meta in Public Cloud.

e We build compute platforms, tooling,
managed infra.

e We don’t run every host ourselves, make

the distinction between customer managed

hosts vs our platform.

Agenda e Preserving the Research Experience
e New Ways of Host Management
e Proper Data Access Controls

A typical slurm research cluster

ssh

Login
5
Login

Elurmresta [slurmdbd J
[s'urmctlol] [mysql

Existing Architecture

e Metalnstance based HPC (v2) with Chef on top
e Allresearch clusters ran Slurm.
e We were heavily invested in immutability & containers.
e We knew we were going to use Kubernetes for the control plane and various platform components.
Metainstance Host
o Non-Containerized Workers Containerized Control Plane)
{ \‘,
' |
: slurmd (traimng Jobs) ! (slurmresto(l
' I
. ,' [S'urmo“:o(] leurmctlog

@on‘taineﬁzeo! Metainstance Laya e Containerized Metainstance l_ou/e,r

loff?mﬁ [MGIP\QS} IOggmg] Ge‘tncS]
_ J

[base OS (ecentosq, ubuntu...) j [base OS (centos9, ubuntu...) j

(GPU Nodes CPU Nodes]

Meta HPC V2)

Where we thought we would go

(’

_

&

4 Non-Containerized = Q?s oleploc/men‘t/ S‘ta‘tejpulse@
slurmo((‘trodning 3055) slurmctlo(/SlurmolBo(/Slurmrest/l
) \ ogin-node J
(" K¥s daemonset " K¥s daemonset
[lowingj &ne‘tﬁcs] [O‘ther j [IO%MS,J [me‘tncsj [Ozher)
M‘PFO\ nrro
<) y
[GPU Nodes] [CPU Nodes |
v
~
Kub t
uoernetes J

[

Meta HPC V3 (Imagined)

Where we went

e We ended up completely rebasing the entire HPC cluster on top of kubernetes.

LHS (Network, Slurm, Data Store, K8s) RHS (Network, Egress, Ingress)

i R a =,

: : [i —\

Slurmdbd login n

: : ngress .

. lurmet| f @ pod] [90'09—%/ b
[NFS] F Ls urMCt = .

; slurmo(J ntra - infra infra egress

: componev\ts slurmres‘t) components L3 te [J > nternet

[OEJec‘t] Connectivity componen go«tewm/ J
Storage . GPU Nodes j (CPU Nodes J

[Data Store J [Kubernetes Jj [Kubernetes)

Preserving the Research Experience

Preserving the Research Experience

The research experience needed to remain consistent

HPC K8s Cluster

...

V\GMeSPGCe:
slurm

Challenges

e A researcher should have no idea that
they are inside of a kubernetes cluster.
o They neverrun helm, kubectl, etc.

E "Login Pods"

E"Control Plane"

~

o == - e - - - - e . e - e . e e = - - -

userl-login

=l

[(— T (e]

Prooﬂ-control-cov\tro"er

j
— J
——

Solutions
e Custom CLI that presents a facade over

k8s APl interactions.
e Since k8s is just http, this is easy.

name.Space:
foo

ST e e . - e e - e - e - e e e ———

- —

/

- - — - — —

Prod1-control-restd

(= |

gpu node: bar-gpu—123

7

- . e e s e e s e mm .

4

-)

\

Slurmo‘

munge

infra componev\t y
(=)

"7 " slurmd: W100-bar-gpu-493 A

"slurmd"

-
--

Preserving the Research Experience

Researcher’s login environments went from multi-tenant to individual

Challenges

e Researchers gained isolated environments with
resource constraints preventing noisy neighbors
and enhancing security.

e Resource guarantees meant we needed login
pods needed to be provisioned on-demand and
cleaned up automatically.

Solutions
e Flux helm controller and a login pod chart

e Kyverno admission controller to enforce
HelmRelease values.

7 ssh

HPC K¥s Cluster

(Slum namespace

4)
Elurmre.stog

[slurmd] [slurmctlog
@(h&lm controller)

|03in—conp‘.3-mo\p—Vo\lues

()

individual HelmRelease CR's

i— —— 8

6 crente [helm controller J

Pl ux namespace

4
[Souﬁce con'tro“e,r)

\ 5 53 helm chart

4 controller read / watch

ky\/efno namespace

[admission controller j]

D a“ow/o(e,ml

_ »

A Por‘u/o;rol

\

.

HelmRelease CRD

chart: Slurm

- i
(re,se_owch el }‘1 write — valuesFrom:

= COV\P S'MO\P

nome: Lunixmome

L— logr\ Qonp‘g MOoP= Va‘ueD

K¥s APIServer

~

New Ways of Host Management

New Ways of Host Management

Managing hosts looks completely different now

Challenges

e Hosts are now immutable
e No systemd besides starting the
containerd/kubelet
e No config management via chef or ansible
e Everything has to be defined in kubernetes
e kube exec became the new ssh
Solutions
e admin-pod daemonset
o A landing zone for kubectl exec
o Tools can be installed without dirtying
the host
e Host Management daemonsets
o Host-cfg: set sysctls
o Automount: Continuously mounting
new NFS datasets

Kubermetes Host (name: host-xyz)

FSlu(‘mo‘. Pod (name: WOO-X-y) Admin Pod (name: dbg-abe) j

f

P R L

You are here

/ete [slurmd J /ete [Bash w“] é
Jusc/bin ' Jver :
. Jusr/bin/edb '
/ uSr‘/B?r\/gi
‘' /host/ete
AifF picl . /host/lib same. pid
. /host/use
\ | J ” / host/var \ | K
(& /ete host Ps Y \

[slurmel] 2'; / (Bo\sh WE)

L[Linux Kernel J J

New Ways of Host Management

Datasets should come and go without disruption

Challenges:

e New datasets should automatically
appear in login & worker pods.
e Using CSI Drivers, PVCs, and PVs

causes pod restarts for login and e
worker pods

Solutions: 3

NFS Provisioner
Mount: NFS con{:igmap

- Create FS
- Mount ConFig

- Apply Permissions

N

=/

[A’FS cov\Figmaa

F:lesc/stems:
- Nname.: L\OM&

“-name.:

e Use NFS everywhere, and do all

-

Linux Kernel

)

_ cl\eckpoint .

mounting at the host level. [

CPU Nodes

sluMoV]og?n Pods b
Host Volume Mounts:
/cl\eckpoints
/datasets
/inFm
\ J
(" Automount Daemonset Pocl) g e W
Host patl« mounts: sbals cof gmap:
heckpoint
;Zaiis‘:;: S mko{ir e moun‘tpoint x,x,x,x:/ckeckpoint/Pr
Lo wmount -av ojectl nfs
k Mount: fstab cor\FigmaP) k)

[

Linux Kernel

[

GPU/CPU Nodes

e Bind mount NFS into login & worker
pods.

Proper Data Access Controls

Proper Data Access Controls

All data access needed to be locked down and auditable

Challenges:

e HPC cluster-internal and external access needs MTLS.
e MTLS requires certificates, but we want them signed
by a private CA.

Solutions:
e cert-manager was used to vend service and user
certificates
o External-issuer allowed us to vend them backed by a
private CA
e MTLS enables egress gateway to able to log every
request with user or service identity

[User Certificate (CRDJ Eewice Certificate (CRD}

A I

Observe Observe

|

N\

)

[Cert-manager]—Store Cert%secrets

[

Cert- - -
User Identity Service Identit
Controller]<‘ Ce,'rt- - _>[Controller !

[
|
[
: [

request cert Cert | request cert
| [
[[
| |

(Private CA4 j

Proper Data Access Controls

mtls & certificates: what’s so hard about that?

Challenges:

e Research workflows are sensitive, git clone, pip install, etc
are routine. We don’t want to get in the way, and not
everything support client certs.

e Researchers workflows should be portable from cluster to
cluster. They shouldn’t have to explicitly configure proxies,
client certificates, etc.

Solution:

e A e-bpfhook transparently proxies tls (ttls) connections
with user certificates.

K8s Cluster
slurmd / login pod
r N
. N AEEE
slurmo(/logtn container (User Jobs/Session) - - 4~ |9 |
‘ | aws s3 ce
sl 1
>l rsl/.v\c |
conda install |
TCP egress TCP ingress " ete. ’,
s i N
eBpf intercept eBpf write Ingress
egress Po.cke_‘ts Packe_ts
inject user certs
Send A= No Tnternet Yes and redirect to
It Is <\ Trofficz / Fwdproxy
(userl.pem,
\ user2.pem)
k\k Trans(aaren‘t SHES Proxt/ Container J J

HTTPS Connect
MTLS

Egress Gatewm/

Allowlist:

- e_xample_.com
Default:
- Deny

— > Internet

Whats Next?

We plan to focus on

Addressing login pod restart sensitivity & image push frequency
Optimizing image size as more features are added
Implementing canary mechanisms

Improving debuggability of components like TTLS

kubernetes

