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Introductions

Shaun Hopper
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e Who we are =N

e We supportinstance level compute for all A
of Meta in Public Cloud.

e We build compute platforms, tooling,
managed infra.

e We don’t run every host ourselves, make

the distinction between customer managed

hosts vs our platform.



Agenda e Preserving the Research Experience
e New Ways of Host Management
e Proper Data Access Controls



A typical slurm research cluster
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Existing Architecture

e Metalnstance based HPC (v2) with Chef on top
e Allresearch clusters ran Slurm.
e We were heavily invested in immutability & containers.
e We knew we were going to use Kubernetes for the control plane and various platform components.
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Where we thought we would go
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Where we went

e We ended up completely rebasing the entire HPC cluster on top of kubernetes.

LHS (Network, Slurm, Data Store, K8s) RHS (Network, Egress, Ingress)
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Preserving the Research Experience



Preserving the Research Experience

The research experience needed to remain consistent

HPC K8s Cluster
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Challenges

e A researcher should have no idea that
they are inside of a kubernetes cluster.
o They neverrun helm, kubectl, etc.
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Solutions
e Custom CLI that presents a facade over

k8s APl interactions.
e Since k8s is just http, this is easy.
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Preserving the Research Experience

Researcher’s login environments went from multi-tenant to individual

Challenges

e Researchers gained isolated environments with
resource constraints preventing noisy neighbors
and enhancing security.

e Resource guarantees meant we needed login
pods needed to be provisioned on-demand and
cleaned up automatically.

Solutions
e Flux helm controller and a login pod chart

e Kyverno admission controller to enforce
HelmRelease values.
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New Ways of Host Management



New Ways of Host Management

Managing hosts looks completely different now

Challenges

e Hosts are now immutable
e No systemd besides starting the
containerd/kubelet
e No config management via chef or ansible
e Everything has to be defined in kubernetes
e kube exec became the new ssh
Solutions
e admin-pod daemonset
o A landing zone for kubectl exec
o Tools can be installed without dirtying
the host
e Host Management daemonsets
o Host-cfg: set sysctls
o Automount: Continuously mounting
new NFS datasets
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New Ways of Host Management

Datasets should come and go without disruption

Challenges:

e New datasets should automatically
appear in login & worker pods.
e Using CSI Drivers, PVCs, and PVs

causes pod restarts for login and e
worker pods

Solutions: 3

NFS Provisioner
Mount: NFS con{:igmap

- Create FS
- Mount ConFig

- Apply Permissions

N

=/

[A’FS cov\Figmaa

F:lesc/stems:
- Nname.: L\OM&

“-name.:

e Use NFS everywhere, and do all

-

Linux Kernel

)

\_ cl\eckpoint .

mounting at the host level. [

CPU Nodes

sluMoV]og?n Pods b
Host Volume Mounts:
/cl\eckpoints
/datasets
/inFm
\ J
(" Automount Daemonset Pocl ) g e W
Host patl« mounts: sbals cof gmap:
heckpoint
;Zaiis‘:;: S mko{ir e moun‘tpoint x,x,x,x:/ckeckpoint/Pr
Lo wmount -av ojectl nfs
k Mount: fstab cor\FigmaP ) k )

[

Linux Kernel

[

GPU/CPU Nodes

e Bind mount NFS into login & worker
pods.



Proper Data Access Controls



Proper Data Access Controls

All data access needed to be locked down and auditable

Challenges:

e HPC cluster-internal and external access needs MTLS.
e MTLS requires certificates, but we want them signed
by a private CA.

Solutions:
e cert-manager was used to vend service and user
certificates
o External-issuer allowed us to vend them backed by a
private CA
e MTLS enables egress gateway to able to log every
request with user or service identity
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Proper Data Access Controls

mtls & certificates: what’s so hard about that?

Challenges:

e Research workflows are sensitive, git clone, pip install, etc
are routine. We don’t want to get in the way, and not
everything support client certs.

e Researchers workflows should be portable from cluster to
cluster. They shouldn’t have to explicitly configure proxies,
client certificates, etc.

Solution:

e A e-bpfhook transparently proxies tls (ttls) connections
with user certificates.
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Whats Next?



We plan to focus on

Addressing login pod restart sensitivity & image push frequency
Optimizing image size as more features are added
Implementing canary mechanisms

Improving debuggability of components like TTLS



kubernetes







