Evolving AI Research Infrastructure with Kubernetes at Meta

Scale 22x

Introductions

- Who we are
- We support instance level compute for all of Meta in Public Cloud.
- We build compute platforms, tooling, managed infra.
- We don't run every host ourselves, make the distinction between customer managed hosts vs our platform.

Shaun Hopper

Chandan Avdhut

Agenda

- Preserving the Research Experience
- New Ways of Host Management
- Proper Data Access Controls

A typical slurm research cluster

Existing Architecture

- MetaInstance based HPC (v2) with Chef on top
- All research clusters ran Slurm.
- We were heavily invested in immutability & containers.
- We knew we were going to use Kubernetes for the control plane and various platform components.

Metainstance Host

Where we thought we would go

Where we went

• We ended up completely rebasing the entire HPC cluster on top of kubernetes.

Preserving the Research Experience

The research experience needed to remain consistent

Challenges

- A researcher should have no idea that they are inside of a kubernetes cluster.
- They never run helm, kubectl, etc.

Solutions

- Custom CLI that presents a facade over k8s API interactions.
- Since k8s is just http, this is easy.

Researcher's login environments went from multi-tenant to individual

Challenges

- Researchers gained isolated environments with resource constraints preventing noisy neighbors and enhancing security.
- Resource guarantees meant we needed login pods needed to be provisioned on-demand and cleaned up automatically.

Solutions

- Flux helm controller and a login pod chart
- Kyverno admission controller to enforce HelmRelease values.

New Ways of Host Management

Managing hosts looks completely different now

Challenges

- Hosts are now immutable
- No systemd besides starting the containerd/kubelet
- No config management via chef or ansible
- Everything has to be defined in kubernetes
- kube exec became the new ssh

Solutions

- admin-pod daemonset
 - A landing zone for kubectl exec
 - Tools can be installed without dirtying the host
- Host Management daemonsets
 - Host-cfg: set sysctls
 - Automount: Continuously mounting new NFS datasets

Datasets should come and go without disruption

Challenges:

- New datasets should automatically appear in login & worker pods.
- Using CSI Drivers, PVCs, and PVs causes pod restarts for login and worker pods

Solutions:

- Use NFS everywhere, and do all mounting at the host level.
- Bind mount NFS into login & worker pods.

Proper Data Access Controls

All data access needed to be locked down and auditable

Challenges:

- HPC cluster-internal and external access needs MTLS.
- MTLS requires certificates, but we want them signed by a private CA.

Solutions:

- cert-manager was used to vend service and user certificates
 - External-issuer allowed us to vend them backed by a private CA
- MTLS enables egress gateway to able to log every request with user or service identity

mtls & certificates: what's so hard about that?

Challenges:

- Research workflows are sensitive, git clone, pip install, etc are routine. We don't want to get in the way, and not everything support client certs.
- Researchers workflows should be portable from cluster to cluster. They shouldn't have to explicitly configure proxies, client certificates, etc.

Solution:

• A e-bpf hook transparently proxies tls (ttls) connections with user certificates.

Whats Next?

We plan to focus on

- Addressing login pod restart sensitivity & image push frequency
- Optimizing image size as more features are added
- Implementing canary mechanisms
- Improving debuggability of components like TTLS

Thanks

