
An Introduction to
Post-Quantum Cryptography
for Linux System Administrators
Presented by Marie Curie Ramirez and Atom Ramirez

Agenda
● What is Post Quantum Cryptography (PQC)
● What is Quantum Computing
● The PQC Algorithms
● Implementing PQC in SSH and HTTPS (TLS) services

UC Berkeley - Sophomore

Marie Curie Ramirez

Applied Mathematics and Data Science

WiCDS (Women in Computing and Data Science)
MPS Scholar Mentor

CalTeach

UC Merced - Junior

Atom Ramirez

Applied Mathematics, concentration in
Computer Science

● SATAL Research Intern
● President of ACM
● Presented on PKI, Linux, Cybersecurity

What is Post Quantum Cryptography
(PQC)?

cryptography focused on developing encryption
algorithms that can run on today’s classical

computers but withstand attacks from future
quantum computers

“Quantum Safe”

“Quantum Resistant” “Quantum Proof Encryption”

Why we need PQC
● Future proof - Quantum computers could break many

public-key cryptosystems, which would compromise digital
communication such as PKI, TLS, SSH, Encryption at rest

● Quantum Attacks - PQC aims to keep existing public key
infrastructure secure in the future

● Compliance - Aligns with emerging cryptographic standards

Quantum Threat - Harvest Now, Decrypt Later

1

2

Data Collection

Future Decryption

Attackers could be collecting encrypted data today using
current encryption algorithms, such as RSA or ECC

When quantum computers reach sufficient capabilities, attackers can use
algorithms like Shor's to decrypt the collected data, revealing sensitive
information that was previously protected by today's encryption methods.

The Quantum Threat Timeline
NIST Releases first set of

PQC algorithms
NIST Disallows RSA,

ECDSA, EdDSA

2024 2026 2028 2030 2032

NIST Deprecates RSA,
ECDSA and EdDSA

2034 2036

IBM - RSA 2048 cracked

IBM - 300 Qubits IBM - 1 Million Qubits
Fault Tolerant QC

NISQ Era - Noisy Intermediate-Scale Quantum Fault Tolerant QC

Q-Day

Post Quantum Cryptography = Quantum Cryptography

Classical encryption algorithms,
resistant to quantum computers

Encryption algorithms using
Quantum Computers

≠

Cryptography 101
● Types of cryptographic categories

○ Symmetric - uses a single shared key for both encrypting and decrypting data
■ faster and more efficient than asymmetric encryption
■ typically used for bulk encryption / encrypting large amounts of data

○ Asymmetric (Public Key Cryptography) - uses two separate keys (public and
private) where one key encrypts data and the other decrypts it

○ Hashing functions - is a one-way function that transforms data into a
fixed-length string. Primarily used to verify data integrity rather than
confidentiality

Cryptography 101: Symmetric Encryption

● AES (Advanced Encryption Standard) + key length (128, 192, 256)
● DES (Data Encryption Standard) - 3DES

Alice wants to send a secret message to Bob

They exchange a shared secret key to decrypt and encrypt the message

ALICE BOB

Shared Key Shared Key

Encryption

Decryption
🔒

Cipher text

Plain text
message

Plain text
message

Cryptography 101: Asymmetric Encryption

● RSA (Ron Rivest, Adi Shamir, Leonard Adleman) + key length (128, 192, 256)
● DSA (Data Encryption Standard) - 3DES
● ECC (Elliptical Curve Cryptography) - ECDSA, Ed25519, ECDH

Alice wants to send a secret message to Bob

ALICE BOB

Bob’s Public Key Bob’s Private key

🔒
Cipher textEncryption DecryptionPlain text

message
Plain text
message

Alice
Public
Key

Alice
Private
Key

Internet

Bob
Public
Key

Bob
Private
Key

Alice
Public
Key

Bob
Public
Key

SHA-512H

Cryptography 101: Hashing Functions (1 of 2)

● SHA-2 (Secure Hash Algorithm) - SHA-256, SHA-384, SHA-512
● SHA-3

Hello
World!

64ec88ca00b2
68e5ba1a3567
8a1b5316d212
f4f366b24772
32534a8aeca3

7f3c

Plain Text Hash Function Hashed Text

64 characters long

Cryptography 101: Hashing Functions (2 of 2)

echo -n "Hello World!" | openssl dgst -sha256
SHA2-256(stdin)= 7f83b1657ff1fc53b92dc18148a1d65dfc2d4b1fa3d677284addd200126d9069

SHA2-256(stdin)= 7f83b1657ff1fc53b92dc18148a1d65dfc2d4b1fa3d677284addd200126d9069
SHA2-384(stdin)= bfd76c0ebbd006fee583410547c1887b0292be76d582d96c242d2a792723e3fd6fd061f9d5cfd13b8f961358e6adba4a
SHA2-512(stdin)= 861844d6704e8573fec34d967e20bcfef3d424cf48be04e6dc08f2bd58c729743371015ead891cc3cf1c9d34b49264b510751b1ff9e537937bc46b5d6ff4ecc8

The SHA Hash Family: SHA-256, SHA-384, SHA-512, SHA3-256,...

Number of Bits (8 bits = 1 byte)
256/8 = 32
384/8 = 48
512/8 = 64

More hash bits == Higher collision resistance == More secure

Classical Quantum Computing

Bloch Sphere

0

1

QubitBit

or

|𝜓⟩ = α |0⟩ + 𝛽 |1⟩
Qubit Quantum State

Superposition

Interference

Entanglement

Quantum Computing

Allows Quantum Bits or qubits to
represent both 0 and 1

simultaneously

Provides computational speedups
by manipulating probabilities

Can perform multiple
calculations at once

50% 50%

0

1

|φ|²

Shor’s Algorithm
● Shor’s Algorithm was developed in 1994 by Peter Shor
● Leverages quantum superposition and entanglement
● Good at finding prime factors of large integers
● Reduces the time of factoring and discrete logarithm problems
● Impacts RSA, DSA, ECC, DIffie-Hellman, etc

The time to break goes from billions of
years to weeks or less

Speedup: O((log n)²) → O(2ⁿ)

Grover’s Algorithm
● Quantum search algorithm developed in 1996
● Leverages quantum superposition and phase interference
● Great a unstructured search problems
● Impacts symmetric key algorithms (AES, 3DES) and hashing functions (SHA 2)

Lov Kumar
Grover

Speedup: O(n) → O(√n)

The time to break a key goes from many billions of
years to fewer billions using a brute force attack

NIST Post-Quantum Encryption Standards

Module Lattice based Key Encapsulation Mechanism (ML-KEM)
For asymmetric encryption

Module-Lattice based Digital Signature Algorithm (ML-DSA)
For digital signatures

Stateless Hash-Based Digital Signature Algorithm (SLH-DSA)
For digital signature

M L-KEM
(formerly CRYSTALS-Kyber)

ML-DSA
(formerly CRYSTALS-Dilithium)

SLH-SSA
(formerly SPINCS+)

Module-Lattice based Digital Signature Algorithm (FN-DSA)
For digital signature

FN-DSA
(formerly FALCON)

Post-Quantum Cryptography in the News

At Risk Cryptographic Algorithms

Algorithm Type Purpose Mitigation
AES-256 Symmetric Encryption Larger Key Sizes

SHA-256, SHA-3 Hash Hash Functions Larger Key Sizes

RSA Asymmetric Signatures/Key
Establishment Not Secure

ECDSA, ECDH Asymmetric Signatures/Key
Establishment Not Secure

Secure Shell (SSH) and Cryptography
SSH provides secure remote logins and
command executions. It uses all three
types of cryptography

SSH CLIENT SSH SERVER

Establish TCP Connection (SYN-ACK)

Version info

Version info

SSH_MSG_KEXINT

SSH_MSG_KEXINT

SSH Key Exchange

SSH_MSG_NEWKEYS

SSH_MSG_NEWKEYS

SSH_MSG_SERVICE_REQ

Version negotiation

Algorithm negotiation

Key Exchange

Service Request

{
{

{
{

SSH SESSION

HTTPS/TLS and Cryptography
Transport Layer Security (TLS) protocol encrypts data to
protect it from authorized access. HTTPS uses TLS to encrypt
communication between browser and web server

CLIENT/BROWSER WEB SERVER

Establish TCP Connection (SYN-ACK)

ClientHello

ServerHello+Certificate

ClientKeyExchange Msg

Key Generation

Finished Msg

Client Hello

HTTPS SESSION

TLS Version, SessionID, List of Cipher Suites

Server Hello
TLS Version, SessionID, Selected Cipher Suites, Server
Certificate

Client Key Exchange
Client generates a shared secret, encrypts it with the public
key given in the servers certificate

Change CipherSpec

Change Cipher Spec
Start Using the new keys for encryption

Key Generation
Client and Server generate a shared key from the key
exchange

U
nencrypted

Encrypted

Open Quantum Safe (OQS) Project

Enabling PQC in OpenSSL
1. Build and install liboqs
2. Build and install oqs provider
3. Configure OpenSSL w/oqs provider
4. Verify OpenSSL configuration

Our Environment
Virtual Machine: Redhat 9.5 minimal install

Dependencies:
● Git, GCC development tools
● OpenSSL 3.2.2 + devel packages

Dnf install

Step 1: Build and install liboqs
// Create the source and build directory
mkdir -p ~src/liboqs && cd ~/src/liboqs

// Download liboqs source from git repo
git clone https://github.com/open-quantum-safe/liboqs.git
cd liboqs

// Set environment with path the liboqs and openssl
mkdir build && cd build
cmake -DBUILD_SHARED_LIBS=ON -DOQS_USE_OPENSSL=OFF \
 -DCMAKE_BUILD_TYPE=Release -DOQS_BUILD_ONLY_LIB=ON-DOQS_DIST_BUILD=ON \
.., GCC dev tools

- OpenSSL 3.2.2 plus the devel packages
- We basically followed instructions from the liboqs project git repo with some changes

// build and install to /usr/local/lib64
make -j $(nproc)
make -j install

https://github.com/open-quantum-safe/oqs-provider.git

Step 2: Build and install oqs-provider
// Create the source and build directory
mkdir -p ~src/oqs-provider && cd ~/src/oqs-provider

// Download oqs-provider source from git repo
git clone https://github.com/open-quantum-safe/oqs-provider.git
cd oqs-provider

// Set environment with path the liboqs and openssl
export liboqs_DIR=/usr/local/lib64
export OPENSSL_INSTALL=/usr

// Build and install to /usr/local/lib64
scripts/fullbuild.sh
cmake -–install _build

https://github.com/open-quantum-safe/oqs-provider.git

Step 3: Configure OpenSSL w/oqs-provider
// Using vi, add the oqs-provider configuration to ssl.conf
vi /etc/ssl/openssl.cnf

PQC oqs-provider
[provider_sect]
default = default_sect
oqsprovider = oqsprovider_sect

[default_sect]
activate = 1

[oqsprovider_sect]
activate = 1

}

}

Define the osq provider

Activate the osq provider

Step 4a: Verify oqs-provider configuration
// List the PQC provider
openssl list -providers

Providers:
 default

name: OpenSSL Default
Provider

version: 3.2.2
status: active

 oqsprovider
name: OpenSSL OQS

Provider
version: 0.8.1-dev
status: active

// List the ML KEM algorithms
openssl list -kem-algorithms | grep kem

 mlkem512 @ oqsprovider
 p256_mlkem512 @ oqsprovider
 x25519_mlkem512 @ oqsprovider
 mlkem768 @ oqsprovider
 p384_mlkem768 @ oqsprovider
 x448_mlkem768 @ oqsprovider
 mlkem1024 @ oqsprovider
 p521_mlkem1024 @ oqsprovider

Step 4b: Verify oqs-provider configuration
// List the KEX algorithms
openssl list -key-exchange-algorithms
[...snip…]
 p256_mldsa44 @ oqsprovider
 rsa3072_mldsa44 @ oqsprovider
 mldsa44_pss2048 @ oqsprovider

 falcon512 @ oqsprovider
 p256_falcon512 @ oqsprovider
 rsa3072_falcon512 @ oqsprovider
 falconpadded512 @ oqsprovider

 rsa3072_sphincssha2128ssimple @ oqsprovider
 sphincssha2192fsimple @ oqsprovider

Implementing PQC in Apache
1. Install Apache web server
2. Enable X25519MLKEM768
3. Test your HTTPS in Apache

Our Environment
Virtual Machine: Redhat 9.5 minimal install

Dependencies:
● OpenSSL w/oqs-provider
● Apache/mod_ssl

// Step 1: Install Apache with mod_ssl
dnf install httpd mod_ssl

Step 2: Enable PQC algorithm
Our Environment

Virtual Machine: Redhat 9.5 minimal install

Dependencies:
● Git, GCC development tools

// Configure ssl configuration with Key Encapsulation Mechanism algorithm
vi /etc/apache/conf.d/ssl.conf

Configure key exchange and key encapsulation mechanisms
SSLOpenSSLConfCmd Curves X25519MLKEM768:X448:X25519:prime256v1

// Restart apache web server
systemctl restart httpd

Step 3:
Test Apache PQC
Connection

Wireshark Screenshot of SSH Session

Other Vulnerable Services

Public Key
Infrastructure

Blockchain and
Crypto

Currencies

PGP/GPG
Encryption

Certificate Authorities (CA)
configured with RSA/ECC
keys

Bitcoin - ECDSA / SHA-256
Ethereum - ECDSA / Keccak (SHA-3)
Litecoin - ECDSA / SCRYPT

Secure Email

Who’s Doing PQC?
● Mozilla using X25519+Kyber
● OpenSSH 9.0
● Google Chrome
● Microsoft Edge
● Cloudflare front end sites using X25529+Kyber
● Signal using Post-Quantum Extended DIffie-Hellman (PQXDH)
● Amazon
● Cisco
● Proton Mail

Next Steps?
● Quantum threats are coming … but Don’t Panic, there’s still time
● Start testing PQC implementations and configurations
● Practice Crypto-Agility
● Start testing PQC today!

Encrypt …
Like it’s 2030

CREDITS: This presentation template was created by Slidesgo, and
includes icons by Flaticon, and infographics & images by Freepik

Thank You!
Do you have any questions?

Atom - aramirez415@ucmerced.edu /
Marie - mariecurieramirez@berkeley.edu /

Please keep this slide for attribution

LinkedIn
LinkedIn

https://bit.ly/3A1uf1Q
http://bit.ly/2TyoMsr
http://bit.ly/2TtBDfr
mailto:aramirez415@ucmerced.edu
mailto:mariecurieramirez@berkeley.edu
https://www.linkedin.com/in/marie-ramirez-6662a629a/
https://www.linkedin.com/in/atom-ramirez-329782210/

