Writing production ready schedulers with sched_ext

MAKE COMPUTERS GO FAST

Jake Hillion Software Engineer

Daniel Hodges Software Engineer

Schedulers: why care?

Scheduler design choices

sched_ext schedulers

Agenda

Testing -> Debugging -> Deploying

Schedulers: why care?

tot= 650 local=80.62 wake/exp/reeng=16.77/ 2.62/ 0.00 xlayer_wake=17.69 xlayer_rewake=15.85 keep/max/busy= 0.15/ 0.00/ 2.92 kick= 0.00 yield/ign= 0.15/ 0 open_idle= 0.00 mig= 9.38 xnuma_mig= 0.00 xllc_mig= 0.00 affn_viol= 0.31 preempt/first/xllc/xnuma/idle/fail= 0.00/ 0.00/ 0.00/ 0.00/ 0.00/ 0.00 min_exec=97.69/ 392.91ms, slice=20ms cpus= 2 [2, 2] 0000003 ^CEXIT: unregistered from user space thread 'l14411 /home/daniel # HDRTEST usr/include/linux/dvb/dmx.h HDRTEST usr/include/linux/dvb/net.h HDRTEST usr/include/linux/dvb/osd.h CC crypto/compress.o HDRTEST usr/include/linux/dvb/video.h CC fs/super.o CC block/bio.o HDRTEST usr/include/linux/dvb/version.h HDRTEST usr/include/linux/dvb/frontend.h CC security/keys/keyring.o HDRTEST usr/include/linux/genwqe/genwqe_card.h CC init/do mounts initrd.o HDRTEST usr/include/linux/hdlc/ioctl.h HDRTEST usr/include/linux/hsi/cs-protocol.h HDRTEST usr/include/linux/hsi/hsi_char.h HDRTEST usr/include/linux/iio/events.h HDRTEST usr/include/linux/iio/buffer.h CC arch/x86/lib/cmdline.o HDRTEST usr/include/linux/iio/types.h HDRTEST usr/include/linux/isdn/capicmd.h [1]+ Stopped make -j `nproc` l14411 /home/daniel/git/hodgesds-linux # 1[||||| 2[|||| 3[|||| 4.3% 1397MHz N/A] 9[3.1% 1400MHz N/A] 10[||||||| 4.3% 1400MHz N/A] 11[4[| 5[|||| 0.6% 1400MHz N/A] 12[3.7% 1400MHz N/A] 13[] 6**[**||| 3.1% 1400MHz N/A] 14[6.9% 1400MHz N/A] 15[|||| 1.2% 1397MHz N/A] 16[Uptime: 01:22:33 Battery: 90.3% (Running on A/ Tasks: 161, 588 thr, 301 kthr Mem: 46.4G used: 3.40G shared: 82.7M compressed: 0K buffers: 2.09M cache: 6.01G available: 42.5G zrm:OK used:OK uncompressed:OK Load average: 5.68 5.02 4.26 Swp:OK used:OK cache:OK frontswap:OK PSI some CPU: 4.09% 12.44 Disk IO: 0.0% read: OKiB/s write: OKiB/s PSI full IO: 0.00% 0.03 Network: rx: OKiB/s tx: OKiB/s (1/0 pkts/s) PSI full memory: 0.00% 0.00 CPU SCHED NI DISK READ DISK WRITE START PID USER PRI NI VIRT RES SHR S CPU% TMEM% TIME+ COMM supertuxkart 5 OTHER 0 0.00 B/s 0.00 B/s 16:23 18894 daniel 20 0 2951M 285M 93160 5 25.3 0.6 4:37.82 F1Help F2Setup F3SearchF4FilterF5Tree F6SortByF7Nice -F8Nice +F9Kill F10Quit / 353.1 GiB 62.1%

C) ; 2 running		0.6% 1400MHz N/A] 8.5% 1397MHz N/A] 8.6% 1397MHz N/A] 0.0% 1397MHz N/A] 0.6% 1400MHz N/A] 0.0% 1397MHz N/A] 2.5% 1400MHz N/A] 0.0% 1400MHz N/A]
% 9.20% % 0.00% % 0.00%		
Command supertuxkart		
	1:sudo 2:bash*	3:nvim- 6.11.0-rc1-x86_64
	Mb/E) 1 dawn 4 69 25% un	W + 0 + 09 2024-10-20 16-47-

R

Real World Use Case: Al Training

Huge machine

8 GPUs

GPU bound work

25.0% 3694MHz N/A]	288[24.2% 1500MHz N/A]
21.7% 1500MHz N/A]	289[30.9% 1900MHz N/A]
12.4% 1500MHz N/A]	299 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	35.2% 3694NHz N/A]
12.0% 2400MHZ N/AJ	291	27.4% ISUUNHZ N/A] 28 8% 2460MU+ N/A]
9.4% 240AMHz N/4]	292111111111111111111111111111111111111	20.0% 2400HHz N/A] 29.1% 1477NHz N/A]
26.9% 3694MHz N/A]	294[1111111111111	15.3% 2400MHz N/A]
30.5% 3694MHz N/A]	295[15.7% 1500MHz N/A]
3.0% 3692MHz N/A]	296[29.1% 3694MHz N/A]
13.4% 2400MHz N/A]	297[21.9% 3694MHz N/A]
8.8% 1472MHz N/A]	298	22.4% 3694MHz N/A]
9.0% 5691MHZ N/R]	299	22.3% 1500MHZ N/A] 26 9% 2400MHZ N/A]
27.7% 2400MH2 N/A]	300	32 6% 2400HHz N/A]
24.8% 2400MHz N/A]	302[111111111111111111111111111111111111	32.4% 1500MHz N/A]
14.4% 2400MHz N/A]	303[11111111111111111111111111111111111	30.6% 2400MHz N/A]
11.4% 3690MHz N/A]	384[111111111111111	19.8% 3694MHz N/A]
21.7% 24D0MHz N/A]	305[28.6% 1500MHz N/A]
28.8% 2400MHz N/A]	386[1111111111111111111	27.3% 1900MHz N/A]
34.1% 3694MHz N/A]	387	18.5% 1500MHz N/AJ
30.35 2400MHz N/4]	309111111111111111111111111111111111111	38.2% 3694NHz N/A]
13.1% 3693MHz N/A]	320[11111111111111111111	24.7% 1500MHz N/A]
31.1% 3673MHz N/A]	311[24.D% 3694MHz N/A]
24.7% 3695MHz N/A]	312[11111111111111111111111111111111111	28.5% 1500MHz N/A]
22.9% 3694MHz N/A]	313[37.9% 3694MHz N/A]
14.4% 1500MHZ N/A]	314	40.1% 3694MHZ N/A]
22 8% 2488MHz N/4]	313111111111111111111111111111111111111	20.0% 3074HHZ N/A] 37 1% 3696NHz N/A]
29.4% 2400MHz N/A]	327[11]11111111111111111111	27.7% 3694MHz N/A1
30.1% 2400MHz N/A]	318[11111111111111111111111111111111111	33.1% 1900NHz N/A]
25.5% 2400MHz N/A]	319[11111111111111111111	25.8% 3694MHz N/A]
9.6% 2400MHz N/A]	320[11111111111111111	21.0% 1500MHz N/A]
23.7% 1500MHz N/A]	321[111111111111111	22.D% 2400HHz N/A]
8.5% 1500MHZ N/A]	2221	23.4% 2400MHZ N/AJ 22.0% 3404NH- N/AJ
28 8% 1500MHz N/A]	324	12 4% 1500HHz N/A]
27.7% 2400MHz N/A]	325[1111111111111111	18.8% 2400MHz N/A]
55.3% 3694MHz N/A]	326[111111111111111111	22.6% 3694MHz N/A]
33.1% 1900MHz N/A]	327[111111111111111	18.0% 3694MHz N/A]
31.2% 3687MHz N/A]	328[28.3% 3694MHz N/A]
25.4% 1500MHz N/A]	329	21.0% 3694NHz N/A]
22.4% 30940HZ N/A]	3301	25.4% 2400HHZ N/A] 30 7% 3696HHz N/A]
31.2% 3694MHz N/A]	332[111111111111111111111	26.9% 2400MHz N/A]
32.4% 1500MHz N/A]	353[111111111111111	20.3% 1500NHz N/A]
28.5% 3694MHz N/A]	334[23.3% 1500MHz N/A]
21.9% 3694MHz N/A]	335[11]1]1]1]1111111111111	26.8% 1500NHz N/A]
17.0% 2400MHz N/A]	336[111111	8.1% 3693NHz N/A]
24.7% 1476MHz N/A]	337	19.4% 3694MHZ N/AJ
34.4% 240AMHz N/4]	3391111111111111111	19.7% 2400NHz N/A]
29.9% 3690MHz N/A]	348[111111111111111111111	28.3% 3694NHz N/A]
16.2% 1900MHz N/A]	341[11111111111111111111111111111111111	26.6% 3694MHz N/A]
24.9% 3694MHz N/A]	342[11111	5.7% 1500NHz N/A]
34.6% 2400MHz N/A]	343[1111111111111111	22.5% 1500MHz N/A]
28.2% 15DOMHz N/A]	344	4.6% 2400MHz N/AJ
52.8% 2400MHZ N/A]	3491	15 DM 1500NH4 N/A]
26.9% 3694MHz N/A]	347	58.0% 3694NHz N/A]
44.6% 3684MHz N/A]	348[11111111111111111111	26.2% 1500NHz N/A]
76.4% 3694MHz N/A]	349[1111111111111111	20.3% 3694MHz N/A]
22.1% 2400MHz N/A]	350[1111111111111111111111	29.0% 3694MHz N/A]
30.1% 15D0MHz N/A]	351[28.5% 1500HHz N/A]
29.0% 3694MHZ N/A]	5521	21.5% 5694MHz N/AJ
13 6% 2400MHz N/A]	354	7 6% 1500NHz N/A]
20.3% 1500MHz N/A]	355[11111111111111111111111111111111111	22.9% 3690NHz N/A]
24.7% 2400MHz N/A]	356[19.8% 1500MHz N/A]
26.8% 3694MHz N/A]	357[16.6% 3694MHz N/A]
32.1% 3694MHz N/A]	358[111111111111111111111111111111111111	33.1% 3694HHz N/A]
24.2% 2400MHz N/A]	359	26.2% 1829MHz N/A]
16 4% 36R2MH2 N/A]	300	20.4% 3094HHZ N/A] 22 1% 3696HHz N/A]
24.9% 2410MHz N/A1	362[18.2% 2400NHz N/A]
7.6% 1500MHz N/A]	363[11111111111111111111111111111111111	35.1% 3694MHz N/A]
21.7% 3694MHz N/A]	364[14.5% 2400MHz N/A]
19.5% 3694MHz N/A]	365[25.3% 1900NHz N/A]
12.8% 1476MHz N/A]	300	13.5% 1500MHz N/A]
27.5% 2400MU2 N/A]	368[111111111111111111111111111111111111	19 AV 1500HU- V/A
25.8% 1508MHz N/4]	369	31 5% 2488NHz N/A]
27.6% 1500MHz N/A]	378[34.9% 2400HHz N/A]
22.5% 1500MHz N/A]	371[22.1% 3691MHz N/A]
2.0% 1500MHz N/A]	372	41.4% 3694MHz N/A]
1.8% 3691MHz N/A]	373	26.7% 2400HHz N/A]
34.1% 3694MHz N/A]	3741111	3.5% 3692NHz N/A]
8.0% 3694MHZ N/A]	376	37.1% 3674NHZ N/A] 63 8% 1500NH Z N/A]
12.4% 1500MHz N/41	377[11111111111111111111111111111111111	18.5% 3694MHz N/A]
26.0% 3694MHz N/A]	378[6.3% 1900MHz N/A]
9.6% 1500MHz N/A]	379[11111111	10.2% 3678MHz N/A]
14.8% 3694MHz N/A]	380[16.6% 3678HHz N/A]
20.1% 1900MHz N/A]	381	21.3% 3694NHz N/A]
23.4% 2400MHz N/A]	382111111111111111	20.8% 2400HHz N/A]
ST. ON SOMANY MAN		10.0% 1000m2 w/A]

Throughput vs Latency

Saturation **Applications should still function**

Latency

Enforcement of deadlines

\$ stress-ng -c 3000 -t 35

per stressor

cpu

(3000)

stress-ng: info: [3989107] metrics untrustworthy: 0

in 1 min, 11.94 secs

- stress-ng: info: [3989107] successful run completed
- stress-ng: info: [3989107] failed: 0
- stress-ng: info: [3989107] passed: 3000: cpu
- stress-ng: info: [3989107] skipped: 0
- stress-ng: info: [3989107] dispatching hogs: 3000
- stress-ng: info: [3989107] setting to a 35 secs run

Schedulers: Out of tree

Many out of tree schedulers exist BORE, GhOst, etc

Upstreaming can be difficult

CachyOS: Out of tree scheduler support

Why sched_ext

Multiple schedulers for various workloads

Update scheduler independent of kernel

Rapid iteration (no reboot required)

Scheduler fuzz testing?

Scheduler design choices

How to handle saturation?

Example

Task sleeps for 1 day, how long should it run?

Unfairness desired (in some cases) background work preemption

Work Conservation

Predictable performance vs use of resources

When to use idle/SMT CPUs?

	100.0% 2816MHz 62°C]	20[11111	100.0% 2900MHz 61°C]	40[шш	HITTE	шш	100.0% 2739MHz N/A]	60[11111		111111		THH	100.0% 2900MHz N/A]
1[3.1% 2795MHz 56°C]	21[11111111111		11111	1.9% 2899MHz N/A]	41[5.5% 2763MHz N/A]	61[1.9% 2896MHz N/A]
2[100.0% 2816MHz 64°C]	22[11]	1111111111		11111	100.0% 2899MHz N/A]	42[1111111	ШШШ	HIHH		100.0% 2739MHz N/A]	62[THE	11111	1111111	HHH	11111	100.0% 2900MHz N/A]
3[2.5% 2899MHz 56°C]	23[1.2% 2001MHz N/A]	43[3.7% 2804MHz N/A]	63[]						1.2% 2897MHz N/A]
4[100.0% 2816MHz 63°C]	24[11111111111		11111	100.0% 2900MHz 56°C]	44[100.0% 2739MHz N/A]	64[11111	111111		11111	100.0% 2900MHz N/A]
5[1.9% 2001MHz N/A]	25[11111111111		11111	1.9% 2820MHz 63°C]	45[]					1.2% 2835MHz N/A]	65[1.9% 2001MHz N/A]
6[100.0% 2816MHz N/A]	26[11111	100.0% 2900MHz 56°C]	46[100.0% 2739MHz N/A]	66[11111		111111			100.0% 2900MHz N/A]
7[2.5% 2001MHz N/A]	27[1.9% 2402MHz 63°C]	47[4.3% 2001MHz N/A]	67[]						0.6% 2001MHz N/A]
8[100.0% 2816MHz 55°C]	28[1111111111		11111	100.0% 2899MHz 53°C]	48[0.0% 2714MHz N/A]	68[11111	11111	111111		11111	100.0% 2900MHz N/A]
9[2.5% 2001MHz 63°C]	29[1.2% 2001MHz N/A]	49[1.9% 2868MHz N/A]	69[THE	[]]]]]	ШШ	11111		2.5% 2896MHz N/A]
10[100.0% 2816MHz 56°C]	30[IIIII	100.0% 2900MHz N/A]	50[100.0% 2739MHz N/A]	70[[]]]]]	1111111	11111		100.0% 2900MHz N/A]
11[1.2% 2001MHz 61°C]	31[0.6% 2615MHz N/A]	51[1.9% 2001MHz N/A]	71[0.0% 2787MHz N/A]
12[100.0% 2816MHz 55°C]	32[11111	100.0% 2900MHz N/A]	52[0.6% 2742MHz N/A]	72[0.0% 2796MHz N/A]
13[1.2% 2001MHz N/A]	33[0.6% 2904MHz N/A]	53[1.9% 2001MHz N/A]	73[]						0.6% 2900MHz N/A]
14[100.0% 2739MHz N/A]	34[11111	100.0% 2900MHz N/A]	54[100.0% 2739MHz N/A]	74[111111			100.0% 2899MHz N/A]
15[1.2% 2770MHz N/A]	35[0.0% 2001MHz N/A]	55[1.9% 2001MHz N/A]	75[0.0% 2001MHz N/A]
16[100.0% 2739MHz 65°C]	36[11111	100.0% 2900MHz N/A]	56[100.0% 2739MHz N/A]	76[11111	111111			100.0% 2899MHz N/A]
17[1.2% 2001MHz 55°C]	37[0.6% 2001MHz N/A]	57[2.4% 2875MHz N/A]	77[0.6% 2001MHz N/A]
18[100.0% 2739MHz 61°C]	38[TITT	100.0% 2899MHz N/A]	58					0.0% 2726MHz N/A]	78[100.0% 2899MHz N/A]
19[3.7% 2001MHz 55°C]	39[]				0.6% 2001MHz N/A]	59[]]					1.2% 2684MHz N/A]	79[]						0.6% 2001MHz N/A]

Vtime/Vruntime

Virtual timeline for scheduler

Not walltime!

Multiple vruntimes

Can span Run Queues (DSQs)

Task vtime -> prioritization **Processes have niceness**

Queuing

FIFO: First In, First Out

Vtime: queue on task vtime

Global/CPU FIFO DSQs

Global DSQ

Schedulers can have multiple vtime and FIFO queues!

Resource Control

Complex Topology (CCX, NUMA, Big/Little)

Resource Contention

Power Management (turbostat)

CPU	Busy%	Bzy_MHz	C1E%	C6%	C8%	C10%	CoreTmp	PkgTmp	PkgWatt	RAMWatt	UncMHz
-	7.03	874	0.60	0.49	15.33	77.09	47	47	4.89	0.00	3800
0	6.89	880	0.63	0.55	8.16	84.55	42	47	4.89	0.00	3800
1	6.75	853	0.17	0.17	6.96	86.67					
2	7.05	975	0.37	0.34	8.54	84.51	44				
3	7.32	1127	0.30	0.62	7.81	84.71					
4	7.14	805	0.41	0.29	17.03	75.64	45				
5	7.31	863	1.16	0.24	17.71	74.06	45				
6	7.32	915	0.25	0.11	15.43	77.30	47				
7	7.15	945	0.48	0.27	15.18	77.27	47				
8	7.02	782	0.89	1.21	23.58	67.77	44				
9	7.20	766	2.11	1.43	28.68	61.05	44				
10	6.69	770	0.12	0.26	18.56	74.75	44				
11	6.54	790	0.30	0.38	16.33	76.80	44				

How shared is your queue: sharing across sockets is probably bad, sharing within LLCs might be okay, one per CPU? Shared queue helps latency sensitive processes but thrashes caches

Where should GPU tasks be scheduled? The scheduler is best placed to choose where to schedule GPU tasks

How shared is your queue: sharing across sockets is probably bad, sharing within LLCs might be okay, one per CPU? Shared queue helps latency sensitive processes but thrashes caches

Where should GPU tasks be scheduled? The scheduler is best placed to choose where to schedule GPU tasks

How shared is your queue: sharing across sockets is probably bad, sharing within LLCs might be okay, one per CPU? Shared queue helps latency sensitive processes but thrashes caches

Where should GPU tasks be scheduled? The scheduler is best placed to choose where to schedule GPU tasks

How shared is your queue: sharing across sockets is probably bad, sharing within LLCs might be okay, one per CPU? Shared queue helps latency sensitive processes but thrashes caches

Where should GPU tasks be scheduled? The scheduler is best placed to choose where to schedule GPU tasks

How shared is your queue: sharing across sockets is probably bad, sharing within LLCs might be okay, one per CPU? Shared queue helps latency sensitive processes but thrashes caches

Where should GPU tasks be scheduled? The scheduler is best placed to choose where to schedule GPU tasks

How shared is your queue: sharing across sockets is probably bad, sharing within LLCs might be okay, one per CPU? Shared queue helps latency sensitive processes but thrashes caches

Where should GPU tasks be scheduled? The scheduler is best placed to choose where to schedule GPU tasks

Scheduler Design: Review

Fairness

Work Conservation

Vruntime

Queueing (FIFO/vtime) and shared queues

Resource Control/Complex Topologies

sched_ext Schedulers

Overview of sched_ext schedulers

How to choose the right scheduler?

What is the workload constraint?

What are the latency vs throughput requirements?

Is scheduling a bottleneck?

Is the system mostly idle?

What is the hardware topology?

scx_bpfland/scx_rustland

Interactive workloads

Write a scheduler in Rust

Scheduling in userspace!

scx_lavd: Latency-Criticality Aware Virtual Deadline

Portable gaming

Task graph

Core compaction

1[0.7% 840MHz 44°C] 7[0.0% 896MHz 44°C]
2[0.0% 855MHz N/A] 8[0.0% 858MHz N/A]
3[0.7% 831MHz N/A] 9[0.0% 876MHz N/A]
4[0.0% 1010MHz N/A] 10[0.0% 859MHz N/A]
5[0.0% 830MHz 47°C] 11[0.0% 900MHz 47°C]
6]	0.0% 858MHz N/A] 12[0.0% 846MHz N/A]
Uptime: 14 days, 11:11:22 Mem:46.6G used:1.82G shared:11.9M compressed:0K buffers:2.61M cache:17.4G available:44.3G zrm:0K used:0K uncompressed:0K Swp:0K used:0K cache:0K frontswap:0K Disk IO: 0.0% read: 0KiB/s write: 0KiB/s Network: rx: 1KiB/s tx: 39KiB/s (13/23 pkts/s)	Battery: N/A Tasks: 40, 77 thr, 184 kthr; 1 running Load average: 0.05 0.03 0.00 PSI some CPU: 99.00% 99.00% PSI full IO: 0.00% 0.00% PSI full memory: 0.00% 0.00%	

scx_rusty

NUMA/Multi CCX

Userspace load balancing

General Purpose

scx_wd40- BPF arenas

cpu= 0.73 load= tot= 16047 sync_prev_idle= 0.22 wsync= 0.22 prev_idle=81.62 greedy_idle= 1.86 pin= 0.00 dir=14.28 dir_greedy= 0.00 dir_greedy_far= 0.00 dsq= 1.79 greedy_local= 0.00 greedy_xnuma= 0.00 kick_greedy= 0.00 rep= 0.01 dl_clamp= 1.34 dl_preset= 0.45 slice=20000us DOM[10] load= 0.09 imbal= +0.01 delta= +0.02

```
###### Thu, 27 Feb 2025 08:10:56 -0800, load balance @ -1772.7ms ######
                0.96 mig=0 task_err=0 time_used= 4.0ms
NODE[00] load= 0.96 imbal= -0.00 delta= +0.00
  DOM[00] load= 0.08 imbal= -0.00 delta= +0.00
  DOM[01] load= 0.08 imbal= -0.01 delta= -0.02
  DOM[02] load= 0.09 imbal= +0.00 delta= +0.02
  DOM[03] load= 0.08 imbal= -0.00 delta= +0.03
  DOM[04] load= 0.10 imbal= +0.01 delta= -0.01
  DOM[05] load= 0.08 imbal= -0.00 delta= +0.00
  DOM[06] load= 0.11 imbal= +0.02 delta= -0.02
  DOM[07] load= 0.09 imbal= -0.00 delta= +0.01
  DOM[08] load= 0.08 imbal= -0.01 delta= -0.04
  DOM[09] load= 0.08 imbal= -0.01 delta= +0.00
```


BPF load balancing (pick2)

Multi-level queueing

Autotune mode

scx_layered

Widely deployed at Meta

Conventional approach: Hard affinity difficult to schedule poor utilization

scx_layered: Soft affinity

cgroup, comm, user, pcomm etc

Wed, 26 Feb 2025 20:05:17 -0800 ###### slice=1ms min_exec= 0.00/ 0.00ms [LLC] nr_cpus: sched% lat_ms slice=0.8ms min_exec= 0.00/ 0.00ms [LLC] nr_cpus: sched% lat_ms [004] 0: 0.18% 7.23 | 0: 0.16% [008] 0: 0.31% 5.28

```
tot= 15953 local_sel/enq=56.50/ 0.50 open_idle= 0.00 affn_viol= 0.42 hi/lo= 0.43/ 0.00
busy= 0.3 util/hi/lo= 34.8/ 0.17/ 0.00 fallback_cpu/util= 1/ 0.0 proc=7ms
excl_coll=0.00 excl_preempt=0.00 excl_idle=0.00 excl_wakeup=0.00
 hodgesd: util/open/frac= 4.7/ 0.00/ 13.6 prot/prot_preempt= 0.01/ 0.01 tasks=
                                                                          427
         tot= 5151 local_sel/eng=56.90/ 0.12 wake/exp/reeng=42.87/ 0.12/ 0.00
         keep/max/busy= 0.04/ 0.00/ 0.00 yield/ign= 0.00/
         open_idle= 0.00 mig=30.17 xnuma_mig= 0.00 xllc_mig/skip= 0.00/ 0.00 affn_viol= 0.00
         preempt/first/xllc/xnuma/idle/fail= 0.00/ 0.00/ 0.00/ 0.00/ 0.00/ 0.00
         xlayer_wake/re= 0.99/ 0.47 llc_drain/try= 0.02/ 0.33
         [000] 2:99.00% 0.06 | 0: 0.17% 3.60 | 0: 0.17% 2.88 |
                                                                0: 0.11% 3.91
         [004] 0: 0.22% 3.41 | 0: 0.06% 3.88 | 0: 0.06% 3.02 |
                                                                0: 0.06% 3.61
         [008] 0: 0.00% 3.60 | 0: 0.00% 3.89 | 0: 0.17% 2.88
 normal : util/open/frac= 30.1/ 0.48/ 86.4 prot/prot_preempt= 0.01/ 0.01 tasks= 2688
         tot= 10802 local_sel/eng=56.31/ 0.68 wake/exp/reeng=42.65/ 0.36/ 0.00
         keep/max/busy= 0.12/ 0.00/ 0.20 yield/ign= 0.19/ 73
         open_idle= 0.00 mig=26.92 xnuma_mig= 0.00 xllc_mig/skip= 0.02/ 0.00 affn_viol= 0.62
         preempt/first/xllc/xnuma/idle/fail= 0.00/ 0.00/ 0.00/ 0.00/ 0.00/ 0.00/ 0.00
         xlayer_wake/re= 0.71/ 0.47 llc_drain/try= 0.31/ 0.79
         [000] 0: 0.22% 5.34 0: 0.22% 7.16 0: 0.13%
                                                          5.48 I
                                                                0: 0.20%
                                                                          5.80
                                         6.20 | 2:97.96%
                                                                          5.21
                                                          4.18
                                                                0: 0.13%
                               0: 0.29% 5.29
                                                0: 0.20% 5.38
```

scx_layered

JSON!?

Confined, Grouped, Open

Matches

[{ "name":"simple", "comment":"it's easy", "matches":[[]], "kind":{ "Open": { }]

scx_layered

Soft Affinity (Grouped)

Frequency control (schedutil)

Time slice

```
[ {
  "name": "hodgesd",
  "comment": "hodgesd user",
  "matches":[
     [{"UIDEquals":12345}]
  ],
  "kind": {
    "Grouped":{
      "util_range": [0.05, 0.6],
      "slice_us": 1000,
      "preempt": true,
      "preempt_first": true,
      "perf": 1024
},
  "name":"normal",
  "comment":"the rest",
  "matches":[[]],
  "kind":{
    "Confined": {
      "util_range": [0.25, 0.6],
      "preempt": false,
      "slice_us": 500,
      "perf": 512
}]
```

01 Testing

02 Debugging

03 Deploying

Cl and Testing

Same Rust compiler & linting tools

Same Clang compiler

Same kernel config & build steps

All available locally to reproduce

BPF verifier failures

```
R2_w=map_value(map=bpf_bpf.bss,ks=4,vs=37975176,off=6135,smin=smin32=0,smax=umax=smax32=umax32=0x484d94,var_off
=(0x0; 0x7ffffc)) R6_w=2035 refs=23,105,195,198
; str_idx++; @ glob.bpf.c:31
314: (bc) w8 = w1
                       ; R1_w=2034 R8_w=2034 refs=23,105,195,198
315: (04) w8 += 1
                   ; R8_w=2035 refs=23,105,195,198
; unsigned char d = pat[pat_idx]; @ glob.bpf.c:38
316: (71) r3 = *(u8 *)(r2 +0)
R2_w=map_value(map=bpf_bpf.bss,ks=4,vs=37975176,off=6135,smin=smin32=0,smax=umax=smax32=umax32=0x484d94,var_off
=(0x0; 0x7ffffc)) R3_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=255,var_off=(0x0; 0xff))
refs=23,105,195,198
; switch (d) { @ glob.bpf.c:40
317: (16) if w3 == 0x2a goto pc+21
The sequence of 8193 jumps is too complex.
processed 80376 insns (limit 1000000) max_states_per_insn 65 total_states 2618 peak_states 2346 mark_read 67
```


Reproducibility with X Nix &

- Lock kernel versions in the repo source (and update automatically!)
- Provide a local build environment identical to the CI with Nix
- Test pull requests against the kernel version they merge with (merge queue)
- Keep the matrix manageable in a "monorepo" (scheduler compatibility promises)

CI: Review

Scheduler options

Kernel versions

Clang versions

Reproducibility

	^
Il_request) Successful in 3m	Required
(pull_request) Successful in 4m	Required
Il_request) Successful in 3m	Required
disable-topology=false,disable-antistall) (pull_request	Succes
disable-topology=false) (pull_request) Successful in 3m	
disable-topology=true,disable-antistall) (pull_request)	Success
disable-topology=true) (pull_request) Successful in 4m	
9s	Required

Testing: Correctness

Testing scheduler changes is hard

Did the scheduler make the right decision?

Cpu 7			coredns [3222	2]
Cpu 8				С
Cpu 9				C
Сри 10			С	coredns [3223]
Cpu 11		coredns	[3115]	COL
✓Ftrace Events				
∧ CPU				
∧ Softirqs				
SoftIrq Cpu 0				
SoftIrq Cpu 1				
SoftIrq Cpu 10				N
SoftIrq Cpu 11	NET_RX	NE	NET	
SoftIrq Cpu 2				Ν

Testing: Performance

Benchmarking stress-ng schbench sysbench

Can easily mislead (ex: Geekbench)

Throughput vs Latency

Single-Core
Single-Core Sco
File Compression
Navigation
HTML5 Browser
PDF Renderer
Photo Library
Clang
Text Processing
Asset Compress

Perform	ance	
ore	1971	
on	1983 284.8 MB/sec	
	1670 10.1 routes/sec	
r	1466 30.0 pages/sec	
	1425 32.9 Mpixels/sec	
	1240 16.8 images/sec	
	2330 11.5 Klines/sec	
ļ	1961 157.1 pages/sec	
sion	1835	

Testing: Synthetic Workloads

Example: rd-hashd

Workload representation

Maintenance

[INF0]	Startin	g hashe	r (max	xcon=6553	6 -	lat=75.0ms	rps:	=65536	file=	201.01G	anon=603	.02G)
[INFO]	p50:125	.1 p84:	169.3	p90:182.	2	p99:232.4	rps:	421.9	con:	23.4		
[INFO]	p50: 42	.4 p84:	52.5	p90: 55.	6	p99: 66.5	rps:	609.7	con:	32.4		
[INFO]	p50: 45	.1 p84:	56.3	p90: 60.	0	p99: 73.0	rps:	861.2	con:	50.0		
[INFO]	p50: 51	.4 p84:	65.3	p90: 69.	8	p99: 88.8	rps::	1135.6	con:	70.8		
[INF0]	p50: 54	.7 p84:	71.0	p90: 76.	5 I	p99: 95.8	rps:2	1383.7	con:	84.9		
[INFO]	p50: 53	.8 p84:	72.0	p90: 78.	9	p99:105.4	rps::	1545.3	con:	69.2		
[INFO]	p50: 47	.4 p84:	64.1	p90: 69.	9	p99: 93.9	rps::	1204.6	con:	59.8		
[INFO]	p50: 43	.1 p84:	55.2	p90: 59.	4	p99:100.0	rps:2	1324.3	con:	65.4		
[INF0]	p50: 53	.4 p84:	76.2	p90:101.	1	p99:165.7	rps:2	1095.5	con:	44.8		
[INFO]	p50: 47	.2 p84:	65.6	p90: 74.	3	p99:115.4	rps:	847.4	con:	38.7		
[INFO]	p50: 56	.1 p84:	81.9	p90: 91.	3	p99:153.7	rps:	614.8	con:	26.8		
[INFO]	p50: 46	.5 p84:	65.8	p90: 73.	2	p99:101.0	rps:	444.7	con:	23.0		
[INF0]	p50: 44	.4 p84:	64.2	p90: 70.	3	p99:131.5	rps:	531.7	con:	24.3		
[INFO]	p50: 41	.0 p84:	52.5	p90: 56.	1	p99: 80.7	rps:	539.8	con:	26.6		
[INFO]	p50: 65	.3 p84:	93.3	p90:102.	3	p99:161.5	rps:	394.9	con:	20.3		
[INF0]	p50: 46	.8 p84:	63.3	p90: 68.	8	p99: 93.1	rps:	455.7	con:	22.6		
[INFO]	p50: 51	.9 p84:	67.7	p90: 73.	3	p99: 99.4	rps:	424.6	con:	22.8		
[INFO]	p50: 58	.3 p84:	88.0	p90:104.	6	p99:166.4	rps:	257.4	con:	14.2		
[INFO]	p50: 44	.0 p84:	56.7	p90: 61.	0	p99: 79.0	rps:	372.8	con:	20.5		
[INF0]	p50: 76	.3 p84:	116.1	p90:124.	9	p99:160.5	rps:	315.5	con:	15.9		
[INFO]	p50: 44	.4 p84:	70.8	p90: 82.	2	p99:141.9	rps:	289.6	con:	13.1		

02

Debugging

03 Deploying

Debugging: Remember Scheduler Design?

Fairness -> Time slice (per CPU, task, etc)

Work Conservation -> system/scheduler stats

Vtime -> vtime progression

Queueing (FIFO/vtime) -> Queue depth, latency, vtime progression

Resource Control/Complex Topologies -> load balancing, (un)core freq, pkg watts

Debugging: bpf_trace_printk

[jakehillion@devbig002]/d	lata/u	sers/ja	akehillion/scx%	sudo bpftool prog	tracelog gr	ep hillion head	-n 100
<idle>-0</idle>	[003]	d.h.1	2001648.455385:	<pre>bpf_trace_printk:</pre>	LAYER=0 carb	on-global-s[152998	85] cgrp
<idle>-0</idle>	[000]	d.h.1	2001648.459824:	<pre>bpf_trace_printk:</pre>	LAYER=0 Scri	beQS-pr-def[253861	[4] cgrp
procreader_work-3731087	[089]	d1	2001648.460818:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 24</pre>	
procreader_work-3731087	[089]	d1	2001648.460840:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 24</pre>	
<idle>-0</idle>	[008]	d.h.1	2001648.460851:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 8</pre>	
below-3730981	[024]	d1	2001648.460871:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 117</pre>	
procreader_work-3731088	[117]	d1	2001648.460895:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 73</pre>	
procreader_work-3731088	[117]	d1	2001648.460917:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 24</pre>	
below-3730981	[024]	d1	2001648.460945:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 73</pre>	
procreader_work-3731084	[073]	d1	2001648.460967:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 0</pre>	
procreader_work-3731084	[073]	d1	2001648.460993:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 24</pre>	
below-3730981	[024]	d1	2001648.461038:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 0</pre>	
procreader_work-3731083	[000]	d1	2001648.461047:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 73</pre>	
procreader_work-3731083	[000]	d1	2001648.461056:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 24</pre>	
below-3730981	[024]	d1	2001648.461082:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 0</pre>	
procreader_work-3731083	[000]	d1	2001648.461089:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 89</pre>	
procreader_work-3731083	[000]	d1	2001648.461096:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 24</pre>	
below-3730981	[024]	d1	2001648.461123:	<pre>bpf_trace_printk:</pre>	jakehillion:	select_cpu = 89	
procreader_work-3731087	[089]	d1	2001648.461129:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 117</pre>	
procreader_work-3731087	[089]	d1	2001648.461136:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 24</pre>	
below-3730981	[024]	d1	2001648.461162:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 89</pre>	
procreader_work-3731087	[089]	d1	2001648.461167:	<pre>bpf_trace_printk:</pre>	jakehillion:	<pre>select_cpu = 162</pre>	
bpftool-3036252	[061]	d1	2001648.461173:	<pre>bpf_trace_printk:</pre>	jakehillion:	select_cpu = 95	
procreader_work-3731087	[089]	d1	2001648.461175:	bpf_trace_printk:	jakehillion:	<pre>select_cpu = 24</pre>	
below-3730981	[024]	d1	2001648.461201:	bpf_trace_printk:	jakehillion:	<pre>select_cpu = 89</pre>	
procreader_work-3731087	[089]	d1	2001648.461207:	bpf_trace_printk:	jakehillion:	select_cpu = 163	
procreader_work-3731087	[089]	d1	2001648.461215:	bpf_trace_printk:	jakehillion:	select_cpu = 24	
below-3730981	[024]	d1	2001648.461243:	bpf_trace_printk:	jakehillion:	select_cpu = 89	
procreader_work-3/3108/	[089]	d1	2001648.461248:	bpf_trace_printk:	jakehillion:	select_cpu = 0	
procreader_work-3/3108/	[089]	d1	2001648.461255:	bpf_trace_printk:	jakehillion:	select_cpu = 24	
De LOW-3/30981	[024]	d1	2001648.461281:	<pre>bpf_trace_printk:</pre>	jakenillion:	select_cpu = 0	
procreader_work-3/31083	[000]	d1	2001648.46128/:	<pre>ppf_trace_printk:</pre>	jakenillion:	select_cpu = 11/	
procreader_work-3/31083	[000]	d1	2001648.461294:	<pre>ppt_trace_printk:</pre>	jakenillion:	$select_cpu = 24$	
Delow-3/30981	[024]	d1	2001648.461320:	<pre>ppf_trace_printk:</pre>	jakenillion:	select_cpu = 11/	
procreader_work-3/31088		d1	2001648.461329:	opf_trace_printk:	jakenillion:	select_cpu = 162	
procreader_work-3/31088		d1	2001648.461344:	opf_trace_printk:	jakenillion:	select_cpu = 24	
DDTT001-3036252	[001]	d1	2001048.401330;	opf_trace_printk:	jakenillion:	select_cpu = 95	
Delow-3730981	[024]	4 6 2	2001048.4013/0:	bpf_trace_printk:	jakenillion:	select_cpu = 162	
scx_tayered=303/00/	[162]	d.n.2	2001040.4013/4:	bpf_trace_printk:	jakenillion:	select_cpu = 87	
thrmon hof poll 255066	[102]	d 1	2001040.4013/8:	bpf_trace_printk:	jakenillion:	select_cpu = 163	
progrander verk 2721084	[007]	d 1	2001040.401303:	bpf_trace_printk:	jakenillion:	select_cpu = $1/0$	
bolow 2720091	[024]	d 1	2001040.401393:	bpf_trace_printk:	jakenillion:	select_cpu = 24	
scy layered 2026001	[024]	d c 1	2001040.401430:	bpf_trace_printk:	jakenillion:	select_cpu = 103	
SCX_tayered=5050991	[020]	u.s.1	2001040.401430:	opi_trace_printk:	Jakeni (LION:	$select_cpu = 74$	

Debugging: Scheduler Stats

MSEQ	# Q TASK	# ACT CPU	# SCHED	PERF-CR%	LAT-CR%	X-MIG%	# STLEE	BIG%	PC/BIG%	LC/BIG%	POWER MODE	PERFORMANCE%	BALANCED%	POWERSAVE%
4191	3	5	1223	100	72.2813	0.0817661	0	100	100	72.2813	balanced	2.8431e-08	95.9147	4.08526
4192	4	96	26862	100	49.3522	32.1867	3	100	100	49.3522	performance	98.5095	0.425263	1.06519
4193	3	9	4483	100	60.3168	0.289984	0	100	100	60.3168	balanced	2.81847e-06	63.2284	36.7715
4194	3	5	3955	100	55.5247	0.202276	0	100	100	55.5247	balanced	3.31671e-08	100	3.31671e-08
4195	3	2	2478	100	71.1461	0.0403551	0	100	100	71.1461	powersave	2.80284e-08	0.0036965	99.9963
4196	3	2	2252	100	67.3623	0.044405	0	100	100	67.3623	powersave	2.45714e-08	2.45714e-08	100
4197	3	2	1234	100	73.987	0	0	100	100	73.987	powersave	4.06103e-08	4.06103e-08	100
4198	3	2	1504	100	68.484	0	0	100	100	68.484	powersave	3.31657e-08	3.31657e-08	100
4199	3	2	3201	100	54.4205	0.187441	0	100	100	54.4205	powersave	2.84411e-08	2.84411e-08	100
4200		5	5509	100	62.7156	4.12053	0	100	100	62.7156	balanced	2.4889e-08	95.8979	4.10206
MSEQ	# Q TASK	# ACT CPU	# SCHED	PERF-CR%	LAT-CR%	X-MIG%	# STLEE	BIG%	PC/BIG%	LC/BIG%	POWER MODE	PERFORMANCE%	BALANCED%	POWERSAVE%
4201	3	13	2872	100	72.4582	0.348189	0	100	100	72.4582	balanced	4.06033e-08	48.983	51.017
4202	3	6	4529	100	60.8744	0.353279	0	100	100	60.8744	balanced	3.37309e-08	99.9998	0.000238849
4203	3	13	7357	100	51.6787	1.84858	0	100	100	51.6787	balanced	2.88559e-08	100	2.88559e-08
4204	3	6	2920	100	66.1301	0.856164	0	100	100	66.1301	balanced	2.5188e-08	99.9433	0.0566609
4205	3	3	850	100	81.2941	0.235294	0	100	100	81.2941	powersave	4.06198e-08	4.06198e-08	100
4206	3	3	854	100	83.2553	0.117096	0	100	100	83.2553	powersave	3.37294e-08	3.37294e-08	100
4207	3	3	1636	100	88.3863	0	0	100	100	88.3863	powersave	2.88397e-08	2.88397e-08	100
4208	3	2	2886	100	72.2107	0.17325	0	100	100	72.2107	powersave	2.51902e-08	0.000312585	99.9997

Debugging: Start with bpftrace

[jakehillion@dev	big002]/d	ata/users/jakehillion/scx%
<pre>scripts/dsq_lat.</pre>	bt:1-25:	WARNING: scx_bpf_dsq_insert is not traceable (
scripts/dsq_lat.	bt:26-27:	WARNING: scx_bpf_dsq_insert_vtime is not trac
Attaching 7 prob	es	
cannot attach kp	robe, Inv	alid argument
WARNING: could n	ot attach	<pre>probe kprobe:scx_bpf_dsq_insert_vtime, skippi</pre>
cannot attach kp	robe, Inv	alid argument
WARNING: could n	ot attach	<pre>probe kprobe:scx_bpf_dsq_insert, skipping.</pre>
<pre>@lat_avg_usec[0]</pre>	: 872	
adea hist user[A	1.	
	76	100000
[2, 4) [/ 8]	270	10000000
[4, 0) [8, 16]	279	
[0, 10]	542	
[10, 52]	517	
[52, 04)	/13	100000000000000000000000000000000000000
[128 256]	413	
[256 512]	321	100000000000000000000000000000000000000
[230, 312) [512 1K)	257	100000000000000000000000000000000000000
[312, 10]	155	100000000000000000000000000000000000000
[2K, 2K)	181	1000000000000
[4K 8K)	97	Lagagagag
[RK 16K)	100	Lagagagaga
[16K 32K)	17	10
[32K 64K)	1	
[32K) 04K)	+	
@dsg lat avg use	c[0]: 872	

a t.bt (either n ceable (e	10 11
ing.	
I	÷.
-	

Debugging: Make a tui in bpftrace

			soxton			
cpu:11 cpu:5 cpu:0 cpu:8	freq:0 freq:0 freq:0 freq:0 freq:0	dsqs:0 dsqs:0 dsqs:0 dsqs:0 dsqs:0	scxtop lat_avg/lat_max(0,0) lat_avg/lat_max(0,0) lat_avg/lat_max(0,0) lat_avg/lat_max(0,0)	cpu:3 cpu:2 cpu:6 cpu:9	freq:0 freq:0 freq:0 freq:1024	dsqs:0 dsqs:0 dsqs:0 dsqs:1
сри:7 сри:10	freq:1024 freq:1024	dsqs:2 dsqs:2	lat_avg/lat_max(3328723030,4068439292) lat_avg/lat_max(3051329481,4068439451)	сри:4 сри:1	freq:0 freq:1024	dsqs:0 dsqs:3
			-DS0c			
dsq(vtime):0x00000000 nr_avg/nr_max(2,5) wght_avg/wght_max(100,100) vtime/99171609919 dsq(vtime):0x00000001 nr_avg/nr_max(1,1) wght_avg/wght_max(100,100) vtime/99171100817						

- $lat_avg/lat_max(0,0)$
- lat_avg/lat_max(0,0)
- lat_avg/lat_max(0,0)
- lat_avg/lat_max(4068439390,4068439410)
- lat_avg/lat_max(0,0)
- lat_avg/lat_max(739716241,4068439362)

19

Debugging: Make a proper tool (scxtop)

How many L3 misses?

How many Context switches?

etc...

Aggregations on topology (LLC, NUMA)

Debugging: Make a proper tool (scxtop)

p2dg dsg_lat_us avg 20 max 797 min 0-		-Node0 (cycles) avg 73,337,307 max 544,743,930 min 175,564
0x1 avg 20 max 295 min 0 13	0 2.816GHz 7,737,510	1 2.699GHz 6,650,249
0x2 avg 16 max 96 min 5 13	2 2.699GHz 3,817,399	3 2.001GHz 2,620,877
0x8 avg 23 max 797 min 0 6	4 2.001GHz 4,718,679	5 2.001GHz 13,614,771
0x9 avg 11 max 53 min 0 11	6 3.196GHz 13,077,688	7 2.883GHz 9,394,751
0xA avg 19 max 301 min 5 9	8 2.001GHz 3,219,192	9 2.001GHz 1,594,722
0x80000000000002 avg 30 max 483 min 3 8	10 2.850GHz 399,079,050	11 2.816GHz 5,201,466
	12 3.077GHz 7,674,119	13 2.980GHz 3,597,420
	14 2.001GHz 58,943,825	15 2.001GHz 1,118,222
	16 2.870GHz 6,366,697	17 2.001GHz 1,217,698
	18 2.886GHz 6,256,338	19 2.001GHz 7,099,008
	40 3.044GHz 5,106,104	41 2.569GHz 92,270,810
	42 2.001GHz 6,887,509	43 2.001GHz 5,875,887
	44 2.001GHz 7,498,773	45 2.001GHz 1,378,708
	46 2.849GHz 29,157,153	47 2.001GHz 6,699,367
	48 2.001GHz 27,586,583	49 2.850GHz 445,052,706
	50 2.001GHz 1,272,894	51 2.001GHz 5,968,866
	52 2.884GHz 43,140,080	53 2.001GHz 2,092,372
	54 2.799GHz 78,381,388	55 2.850GHz 445,019,042
	56 2.900GHz 33,292,207	57 2.900GHz 408,660,219
	58 2.001GHz 5,498,769	59 2.897GHz 1,847,107
p2dq dsq_vtime_delta avg 89,203,079,992 max 227,723,843,928 min 0 0x1 avg 93,469,066,410 max 225,175,980,067 min 0 80,836,465,088 0x2 avg 114,130,274,980 max 197,570,278,764 min 34,467,961,909 113,887,735,880 0x8 avg 36,309,210,755 max 211,728,478,010 min 0 94,650,298,549 0x9 avg 83,223,576,889 max 216,073,279,439 min 0 216,073,279,439 0xA avg 118,883,470,924 max 227,723,843,928 min 31,865,131,073 227,723,843,928	UNCOPE 2.400GHz 20 2.942GHz 22,651,668 22 3.400GHz 25,351,709 24 2.001GHz 3,020,159 26 2.001GHz 658,732 28 2.001GHz 1,964,310 30 2.001GHz 5,510,728 32 3.350GHz 450,266,089 34 2.001GHz 7,402,784 36 2.001GHz 738,127 38 2.001GHz 1,338,165 60 3.400GHz 445,655,083 62 2.755GHz 10,384,170 64 2.826GHz 31,435,166 66 2.001GHz 562,861 68 2.001GHz 580,760 70 2.706GHz 3,328,131 72 2.001GHz 685,609 74 2.708GHz 2,511,687 76 2.001GHz 411,055 78 2.826GHz 473,556,156	Nodel (cycles) avg 86,939,715 max 611,825,350 min 225,989 21 3.4006Hz 6,562,606 23 2.0016Hz 4,539,565 25 2.8786Hz 3,884,758 27 2.0016Hz 1,441,347 29 2.0016Hz 835,597 31 2.0016Hz 1,110,355 33 2.0016Hz 1,194,142 37 2.7946Hz 2,698,765 39 2.0016Hz 1,195,181 61 2.8266Hz 33,157,768 63 2.0016Hz 2,552,948 67 2.0016Hz 2,552,948 67 2.0016Hz 49,100,518 69 2.0016Hz 9,571,846 73 2.0016Hz 442,701,934 77 2.0016Hz 469,437 79 2.5336Hz 630,970

Debugging: ...and generate Perfetto traces

01 Testing

02 Debugging

03 Deploying

Deploying: Monitoring

What dimensions are important? (hint: scheduler design)

How to observe? **Overview -> What is the health of the scheduler (golden signals, USE etc)?** Aggregation -> What is p95% queue latency across all hosts? Insights -> What is the p99% queue depth of PID 123 on testhost.123?

For each dimension you must observe!

Deploying: Healthchecks

Run Queue Latency: Depends on the DSQ!

Scheduler unloads from stalls

	—p2dq dsq_lat_us avg 1 max 185 min 0—
0x1 avg 0 max 19 min 0	9
0x2 avg 1 max 44 min 0	11
0x9 avg 0 max 9 min 0	9
0xA avg 0 max 15 min 0	15
0x10 avg 0 max 7 min 0	7
0x11 avg 0 max 18 min 0	6
0x12 avg 1 max 20 min 0	10
0x18 avg 0 max 12 min 0	12
0x19 avg 0 max 17 min 0	14
0x1A avg 0 max 11 min 0	9
0x20 avg 0 max 14 min 0	13
0x21 avg 0 max 13 min 0	12
0x22 avg 1 max 22 min 0	10
0x28 avg 0 max 7 min 0	7
0x29 avg 0 max 16 min 0	8
0x2A avg 1 max 23 min 0	12
0x30 avg 0 max 20 min 0	20

R stress-ng-cpu[4017493] -16260ms

- scx_state/flags=3/0x9 dsq_flags=0x0 ops_state/qseq=0/0
- sticky/holding_cpu=-1/-1 dsq_id=0x8000000 dsq_vtime=382679009

 - __x64_sys_clock_nanosleep+0xef/0x160
 - do_syscall_64+0x63/0x130
 - entry_SYSCALL_64_after_hwframe+0x4b/0x53
- R stress-ng-cpu[4015957] -16260ms
 - scx_state/flags=3/0x9 dsq_flags=0x0
- ops_state/qs
- ~~~~ TRUNCATED ~~~~

Error: EXIT: runnable task stall (watchdog failed to check in for 30.001s)

Deploying: Healthchecks

App specific scheduling -> Tricky

Scheduler deployment App specific configs

Tight coupling!

Reuse service health checks for scheduling

```
"name": "workload.slice",
"comment": "workload.slice",
"matches": [
      "CgroupPrefix": "workload.slice"
"kind": {
  "Grouped": {
    "util_range": [
      0.6,
      0.75
"name": "normal",
"comment": "the rest",
"matches": [
  []
],
"kind": {
  "Confined": {
    "util_range": [
      0.8,
      0.9
```

Lessons from deploying scx_layered

Need to know application design (latency critical threads etc) **Proper thread naming/observability**

Kernel bugs -> your bugs

Deploying a new kernel version and scheduler (at the same time) is tricky

Testing, debugging, monitoring, and deploying is hard

sched_ext

Get involved

GITHUB.COM/SCHED-EXT/SCX