
Writing production ready
schedulers with sched_ext
MAKE COMPUTERS GO FAST

Jake Hillion
Software Engineer

Daniel Hodges
Software Engineer

Agenda

Schedulers: why care?

Scheduler design choices

sched_ext schedulers

Testing -> Debugging -> Deploying

Schedulers: why care?

https://docs.google.com/file/d/1c47s3USfzqmW7QiPeSm2Xgg2lMvTZ2vV/preview

Real World Use Case: AI Training

Huge machine

8 GPUs

GPU bound work

Throughput vs Latency

Saturation

Applications should still function

Latency

Enforcement of deadlines

$ stress-ng -c 3000 -t 35

stress-ng: info: [3989107] setting to a 35 secs run
per stressor

stress-ng: info: [3989107] dispatching hogs: 3000
cpu

stress-ng: info: [3989107] skipped: 0

stress-ng: info: [3989107] passed: 3000: cpu
(3000)

stress-ng: info: [3989107] failed: 0

stress-ng: info: [3989107] metrics untrustworthy: 0

stress-ng: info: [3989107] successful run completed
in 1 min, 11.94 secs

Schedulers: Out of tree
Many out of tree schedulers exist

BORE, Gh0st, etc

Upstreaming can be difficult

CachyOS: Out of tree scheduler support

Why sched_ext

Multiple schedulers for various workloads

Update scheduler independent of kernel

Rapid iteration (no reboot required)

Scheduler fuzz testing?

Scheduler design choices

Fairness
How to handle saturation?

Example

Task sleeps for 1 day, how long should it run?

Unfairness desired (in some cases)

background work

preemption

Work Conservation
Predictable performance vs use of resources

When to use idle/SMT CPUs?

Vtime/Vruntime
Virtual timeline for scheduler

Not walltime!

Multiple vruntimes

Can span Run Queues (DSQs)

Task vtime -> prioritization

Processes have niceness

Queuing
FIFO: First In, First Out

Vtime: queue on task vtime

Global/CPU FIFO DSQs

Schedulers can have multiple vtime
and FIFO queues!

Resource Control
Complex Topology (CCX, NUMA, Big/Little)

Resource Contention

Power Management (turbostat)

COMPLEX
TOPOLOGIES

COMPLEX
TOPOLOGIES

COMPLEX
TOPOLOGIES

COMPLEX
TOPOLOGIES

COMPLEX
TOPOLOGIES

Complex Topologies

How shared is your queue: sharing across sockets is probably bad,
sharing within LLCs might be okay, one per CPU?

Shared queue helps latency sensitive processes but thrashes caches

Where should GPU tasks be scheduled?
The scheduler is best placed to choose where to schedule GPU tasks

How do we handle network interrupts?
scx_layered can place network interrupts on idle CPUs if they are any,
or spread them out

Complex Topologies

How shared is your queue: sharing across sockets is probably bad,
sharing within LLCs might be okay, one per CPU?

Shared queue helps latency sensitive processes but thrashes caches

Where should GPU tasks be scheduled?
The scheduler is best placed to choose where to schedule GPU tasks

How do we handle network interrupts?
scx_layered can place network interrupts on idle CPUs if they are any,
or spread them out

Complex Topologies

How shared is your queue: sharing across sockets is probably bad,
sharing within LLCs might be okay, one per CPU?

Shared queue helps latency sensitive processes but thrashes caches

Where should GPU tasks be scheduled?
The scheduler is best placed to choose where to schedule GPU tasks

How do we handle network interrupts?
scx_layered can place network interrupts on idle CPUs if they are any,
or spread them out

Complex Topologies

How shared is your queue: sharing across sockets is probably bad,
sharing within LLCs might be okay, one per CPU?

Shared queue helps latency sensitive processes but thrashes caches

Where should GPU tasks be scheduled?
The scheduler is best placed to choose where to schedule GPU tasks

How do we handle network interrupts?
scx_layered can place network interrupts on idle CPUs if they are any,
or spread them out

Complex Topologies

How shared is your queue: sharing across sockets is probably bad,
sharing within LLCs might be okay, one per CPU?

Shared queue helps latency sensitive processes but thrashes caches

Where should GPU tasks be scheduled?
The scheduler is best placed to choose where to schedule GPU tasks

How do we handle network interrupts?
scx_layered can place network interrupts on idle CPUs if they are any,
or spread them out

Complex Topologies

How shared is your queue: sharing across sockets is probably bad,
sharing within LLCs might be okay, one per CPU?

Shared queue helps latency sensitive processes but thrashes caches

Where should GPU tasks be scheduled?
The scheduler is best placed to choose where to schedule GPU tasks

How do we handle network interrupts?
scx_layered can place network interrupts on idle CPUs if they are any,
or spread them out

Scheduler Design: Review
Fairness

Work Conservation

Vruntime

Queueing (FIFO/vtime) and shared queues

Resource Control/Complex Topologies

sched_ext Schedulers
Overview of sched_ext schedulers

How to choose the right scheduler?
What is the workload constraint?

What are the latency vs throughput requirements?

Is scheduling a bottleneck?

Is the system mostly idle?

What is the hardware topology?

scx_bpfland/scx_rustland

Interactive workloads

Write a scheduler in Rust

Scheduling in userspace!

scx_lavd: Latency-Criticality Aware Virtual Deadline

Portable gaming

Task graph

Core compaction

scx_rusty

NUMA/Multi CCX

Userspace load balancing

General Purpose

scx_wd40- BPF arenas

scx_p2dq

BPF load balancing (pick2)

Multi-level queueing

Autotune mode

scx_layered
Widely deployed at Meta

Conventional approach: Hard affinity

difficult to schedule

poor utilization

scx_layered: Soft affinity

cgroup, comm, user, pcomm etc

scx_layered
[{
 "name":"simple",
 "comment":"it's easy",
 "matches":[[]],
 "kind":{
 "Open": {
 }
 }
}]

JSON!?

Matches

Confined,
Grouped,
Open

scx_layered
[{
 "name":"hodgesd",
 "comment":"hodgesd user",
 "matches":[
 [{"UIDEquals":12345}]
],
 "kind": {
 "Grouped":{
 "util_range": [0.05, 0.6],
 "slice_us": 1000,
 "preempt": true,
 "preempt_first": true,
 "perf": 1024
 }
 }
},
{
 "name":"normal",
 "comment":"the rest",
 "matches":[[]],
 "kind":{
 "Confined": {
 "util_range": [0.25, 0.6],
 "preempt": false,
 "slice_us": 500,
 "perf": 512
 }
 }
}]

Soft Affinity
(Grouped)

Frequency control
(schedutil)

Time slice

01
Debugging DeployingTesting

02 03

CI and Testing

Same Rust compiler & linting tools

Same Clang compiler

Same kernel config & build steps

All available locally to reproduce

R2_w=map_value(map=bpf_bpf.bss,ks=4,vs=37975176,off=6135,smin=smin32=0,smax=umax=smax32=umax32=0x484d94,var_off
=(0x0; 0x7ffffc)) R6_w=2035 refs=23,105,195,198

; str_idx++; @ glob.bpf.c:31

314: (bc) w8 = w1 ; R1_w=2034 R8_w=2034 refs=23,105,195,198

315: (04) w8 += 1 ; R8_w=2035 refs=23,105,195,198

; unsigned char d = pat[pat_idx]; @ glob.bpf.c:38

316: (71) r3 = *(u8 *)(r2 +0) ;
R2_w=map_value(map=bpf_bpf.bss,ks=4,vs=37975176,off=6135,smin=smin32=0,smax=umax=smax32=umax32=0x484d94,var_off
=(0x0; 0x7ffffc)) R3_w=scalar(smin=smin32=0,smax=umax=smax32=umax32=255,var_off=(0x0; 0xff))
refs=23,105,195,198

; switch (d) { @ glob.bpf.c:40

317: (16) if w3 == 0x2a goto pc+21

The sequence of 8193 jumps is too complex.

processed 80376 insns (limit 1000000) max_states_per_insn 65 total_states 2618 peak_states 2346 mark_read 67

BPF verifier failures

CI and Testing

Reproducibility with &

Lock kernel versions in the repo source (and update automatically!)

Provide a local build environment identical to the CI with Nix

Test pull requests against the kernel version they merge with (merge queue)

Keep the matrix manageable in a “monorepo” (scheduler compatibility promises)

CI: Review

Scheduler options

Kernel versions

Clang versions

Reproducibility

Testing: Correctness
Testing scheduler changes is hard

Did the scheduler make the right decision?

Testing: Performance
Benchmarking

stress-ng

schbench

sysbench

Can easily mislead (ex: Geekbench)

Throughput vs Latency

Testing: Synthetic Workloads

Example: rd-hashd

Workload representation

Maintenance

01
Debugging DeployingTesting

02 03

Debugging: Remember Scheduler Design?
Fairness -> Time slice (per CPU, task, etc)

Work Conservation -> system/scheduler stats

Vtime -> vtime progression

Queueing (FIFO/vtime) -> Queue depth, latency, vtime progression

Resource Control/Complex Topologies -> load balancing, (un)core freq, pkg watts

Debugging: bpf_trace_printk

Debugging: Scheduler Stats

Debugging: Start with bpftrace

Debugging: Make a tui in bpftrace

Debugging: Make a proper tool (scxtop)
How many L3 misses?

How many Context switches?

etc…

Aggregations on topology (LLC, NUMA)

Debugging: Make a proper tool (scxtop)

Debugging: …and generate Perfetto traces

01
Debugging DeployingTesting

02 03

Deploying: Monitoring

What dimensions are important? (hint: scheduler design)

How to observe?

Overview -> What is the health of the scheduler (golden signals, USE etc)?

Aggregation -> What is p95% queue latency across all hosts?

Insights -> What is the p99% queue depth of PID 123 on testhost.123?

For each dimension you must observe!

Deploying: Healthchecks

Run Queue Latency: Depends on the DSQ!

Scheduler unloads from stalls

R stress-ng-cpu[4017493] -16260ms

 scx_state/flags=3/0x9 dsq_flags=0x0
ops_state/qseq=0/0

 sticky/holding_cpu=-1/-1 dsq_id=0x80000000
dsq_vtime=382679009

 cpus=ffff,ffffffff,ffffffff,ffffffff,ffffffff,ffffffff

 __x64_sys_clock_nanosleep+0xef/0x160

 do_syscall_64+0x63/0x130

 entry_SYSCALL_64_after_hwframe+0x4b/0x53

 R stress-ng-cpu[4015957] -16260ms

 scx_state/flags=3/0x9 dsq_flags=0x0
ops_state/qs

~~~~ TRUNCATED ~~~~

=========================================
=======================================

Error: EXIT: runnable task stall (watchdog failed to 
check in for 30.001s)



Deploying: Healthchecks

App specific scheduling -> Tricky

Scheduler deployment

App specific configs

Tight coupling!

Reuse service health checks for scheduling



Lessons from deploying scx_layered

Need to know application design (latency critical threads etc)

Proper thread naming/observability

Kernel bugs -> your bugs

Deploying a new kernel version and scheduler (at the same time) is tricky

Testing, debugging, monitoring, and deploying is hard



Get involved

GITHUB.COM/SCHED-EXT/SCX


