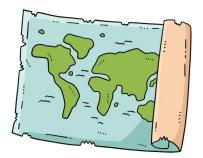
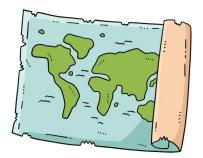
CliMA: A New Open Source Code for Climate Science

Julia Sloan SCALE 2025

CliMA is building an open source Earth System Model from scratch in Julia

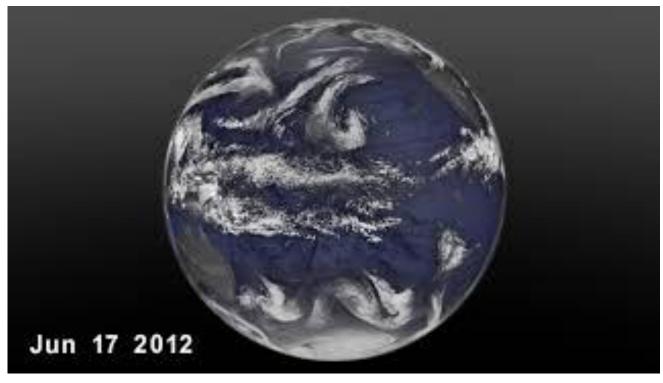


julia


Roadmap

- What is an Earth System Model (ESM)?
- How do ESMs work?
- Challenges faced by ESMs
- Current capabilities of the CliMA model
- How does CliMA address the challenges faced by ESMs?

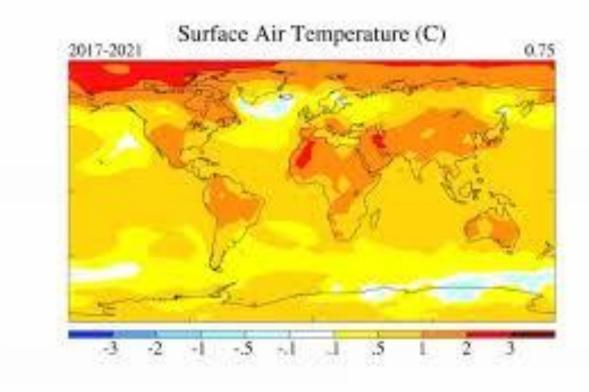
Roadmap


- What is an Earth System Model (ESM)?
- How do ESMs work?
- Challenges faced by ESMs
- Current capabilities of the CliMA model
- How does CliMA address the challenges faced by ESMs?

Earth System Models (ESMs) simulate physical processes of the Earth

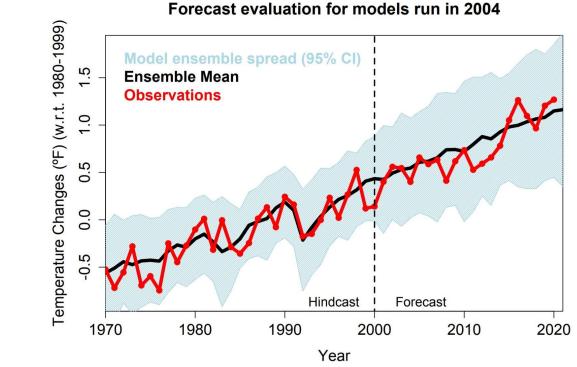
Simulated cloud cover and dynamics

NASA GEOS-5 model



Source: "Earth Day 2020: GEOS-5 Modeled Cloud Cover". Youtube, uploaded by NASA Scientific Visualization Studio, April 24, 2020.

ESMs show how global trends vary over time


Simulated surface air temperature 1880-2100,

NASA GEOS-5 model

Source: "Climate Simulation of Surface Air Temperature". Youtube, uploaded by NASA Climate Change, January 9, 2020.

Using results from an ensemble of ESMs reduces mean errors

Models sometimes use different physical representations

Using ensemble reduces errors from individual models

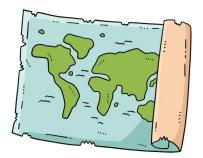
Source: "Basics of Global Climate Models". Climate Hubs, U.S. Department of Agriculture.

Climate Model Intercomparison Project (CMIP) informs governments via IPCC reports

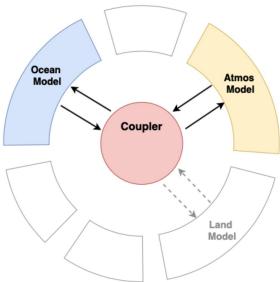
- CMIP looks at **100 models** from 49 centers
- Released every 6-7 years

 most recently in 2023
- Literature review to understand and quantify current status of climate change
- Report targets education and action

 Causes, impacts, response options


ESMs are also used by scientists to test hypotheses

- Climate scientists can't run experiments in a lab
- ESMs allow scientists to test physical hypotheses


Roadmap

- What is an Earth System Model (ESM)?
- How do ESMs work?
- Challenges faced by ESMs
- Current capabilities of the CliMA model
- How does CliMA address the challenges faced by ESMs?

ESMs contain component models and additional infrastructure

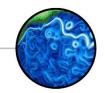
- Component models
 - Atmosphere
 - o Ocean
 - Land
 - Ice
- Coupler
 - Exchange between components

"Hub and spoke" model

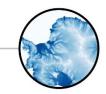
Each domain of the ESM contains many physical processes

OCEAN **ATMOSPHERE Global water cycle Extreme weather Clouds and convection** Aerosols and atmospheric chemistry **Radiative transfer Turbulence and** surface exchanges Human interactions with land, water, and energy Plant processes Vegetation dynamics **Terrestrial biogeochemistry** Soil hydrology Permafrost LAND

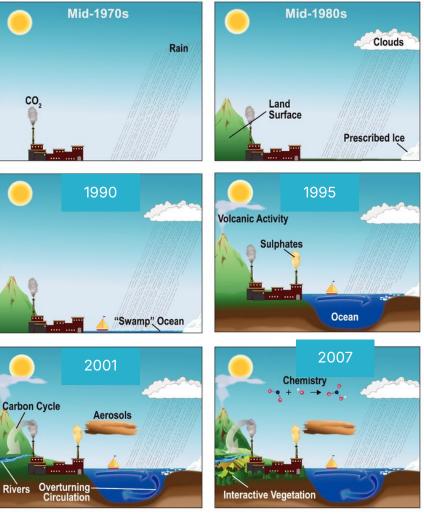
Modes of variability **Coastal processes and waves** Ocean currents and eddies Salinity and biogeochemistry **Mixed layer processes** Deep ocean circulation Sea ice Melt channels and ice shelves


Ice sheets and glaciers

Snowpack


Lake and river ice

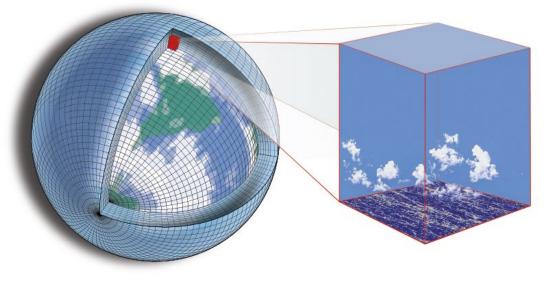
CRYOSPHERE



Source: Paul Ullrich, Dept. of Energy Office of Science. energy.gov/science/doe-explainsearth-system-and-climate-models

ESM complexity is always increasing

- Better scientific understanding
- Improved computational resources and efficiency

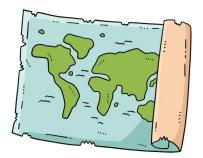


Source: McSweeney, R., Hausfather, Z. "Q&A: How do climate models work?" Carbon Brief.

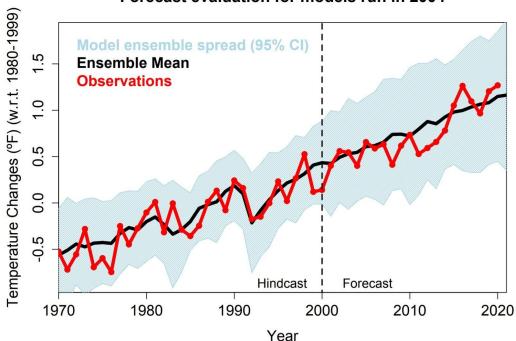
ESMs discretize the globe spatially and solve system of differential equations

Start with initial conditions

Step variables forward in time



Source: Springer Nature, Nature Climate Change, "Climate Goals and Computing the Future of Clouds," Tapio Schneider, João Teixeira, Christopher S. Bretherton, Florent Brient, Kyle G. Pressel et al., 2017.


 $\frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial r^2}$

Roadmap

- What is an Earth System Model (ESM)?
- How do ESMs work?
- Challenges faced by ESMs
- Current capabilities of the CliMA model
- How does CliMA address the challenges faced by ESMs?

Existing ESMs perform well in the historical period

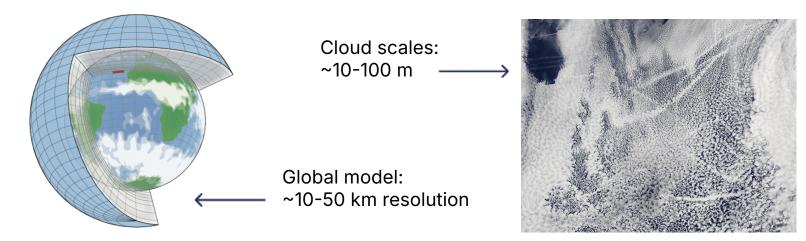
Forecast evaluation for models run in 2004

Source: "Basics of Global Climate Models". Climate Hubs, U.S. Department of Agriculture. <u>https://www.climatehubs.usda.gov/hubs/northwest/topic/basics-global-climate-models</u>

ESMs are complicated pieces of software

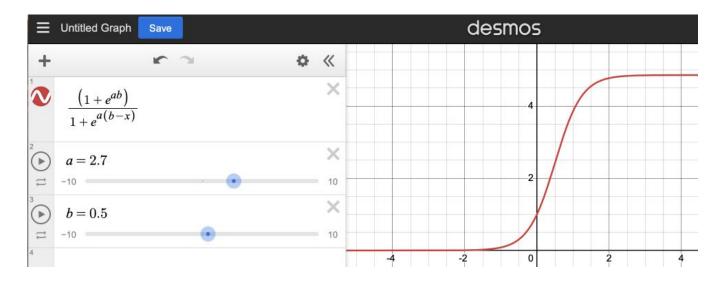
- Processes act on different scales in time and space
 - Atmosphere: fast, low resolution
 - Ocean: slow, high resolution
- Communication between models
 - Regridding, parallel computing
- Often 1,000,000s lines of code
 - Linux kernel: ~30,000,000 lines of code

Most ESMs don't leverage modern computing



ESM simulations are very computationally expensive

- ESMs typically run on 1,000-10,000s of CPU cores for weeks-months
 - Simulated years per day (SYPD) performance metric
- Requirements depend on temporal and spatial resolution

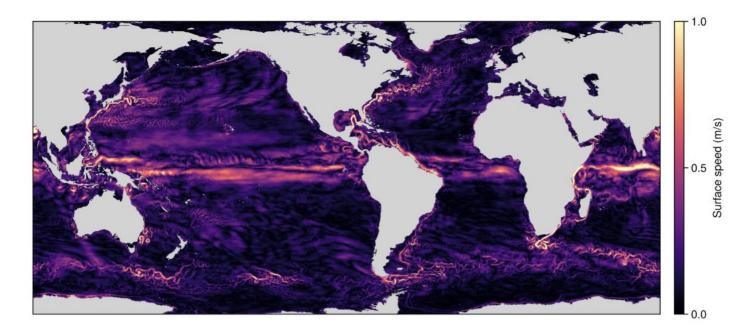

Many processes in the Earth system cannot be resolved at the global scale

Source: NASA MODIS

Parameters are often not well-constrained

- Some parameters can be precisely estimated
 - Gravitational constant (G)
- Many are not
 - Evaporation rate parameters

Performing scientific experiments with existing ESMs can be challenging

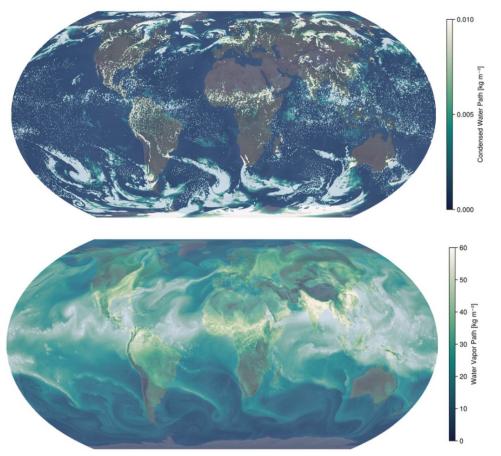


Roadmap

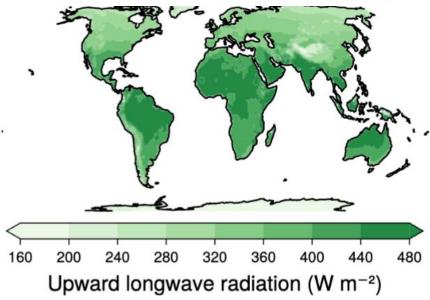
- What is an Earth System Model (ESM)?
- How do ESMs work?
- Challenges faced by ESMs
- Current capabilities of the CliMA model
- How does CliMA address the challenges faced by ESMs?



Oceananigans.jl is the first global ocean model to run on GPU


Source: Wagner, G.L., Silvestri, S., Constantinou, N.C., Campin, J-M., Hill, C., Ramadhan, A., Chor, T., Strong-Wright, J., Lee, X.K., Poullin, F., Souza, A., Burns, K.J., Marshall, J., Ferrari, R., 2025: **High-level, high-resolution ocean modeling at all scales**. *Journal of Advances in Modeling Earth Systems*, submitted.

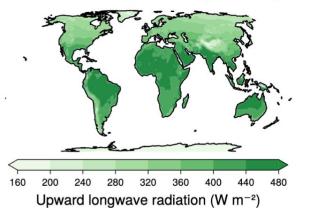
The ocean can be simulated on a regional domain


Source: Wagner, G.L., Silvestri, S., Constantinou, N.C., Campin, J-M., Hill, C., Ramadhan, A., Chor, T., Strong-Wright, J., Lee, X.K., Poullin, F., Souza, A., Burns, K.J., Marshall, J., Ferrari, R., 2025: High-level, high-resolution ocean modeling at all scales. Journal of Advances in Modeling Earth Systems, submitted.

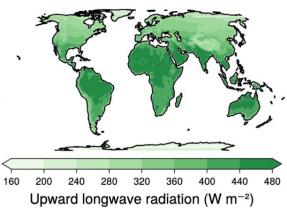
ClimaAtmos.jl output: clouds and humidity

ClimaLand.jl output: temperature

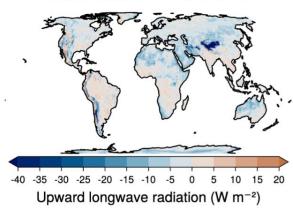
ClimaLand, annually averaged



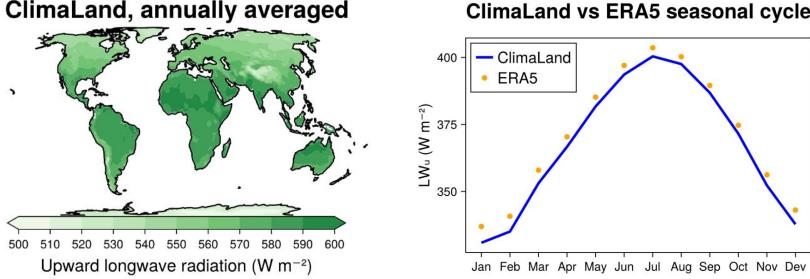
Source: Deck, K., Braghiere, R. K., Renchon, A. A., Sloan, J., Bozzola, G., Speer, E., Mackay, B., Reddy, T., Phan, K., Gagne-Landmann, A. L., Yatunin, D., Charbonneau, A., Efrat-Henrici, N., Bach, E., Ma, S., Gentine, P., Frankenberg, C., Bloom, A., Wang, Y., Longo, M., Schneider, T., 2025: **ClimaLand: A land surface model for advancing climate modeling with machine learning and data-driven parameterizations**. *Journal of Advances in Modeling Earth Systems*, submitted.


longwave radiation: infrared radiation from Earth's surface (heat energy)

ClimaLand.jl performs well compared to data


ClimaLand, annually averaged

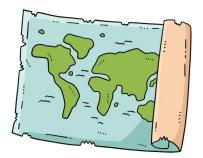
ERA5, annually averaged



ClimaLand vs ERA5 bias

Source: Deck, K., Braghiere, R. K., Renchon, A. A., Sloan, J., Bozzola, G., Speer, E., Mackay, B., Reddy, T., Phan, K., Gagne-Landmann, A. L., Yatunin, D., Charbonneau, A., Efrat-Henrici, N., Bach, E., Ma, S., Gentine, P., Frankenberg, C., Bloom, A., Wang, Y., Longo, M., Schneider, T., 2025: **ClimaLand: A land surface model for advancing climate modeling with machine learning and data-driven parameterizations**. *Journal of Advances in Modeling Earth Systems*, submitted.

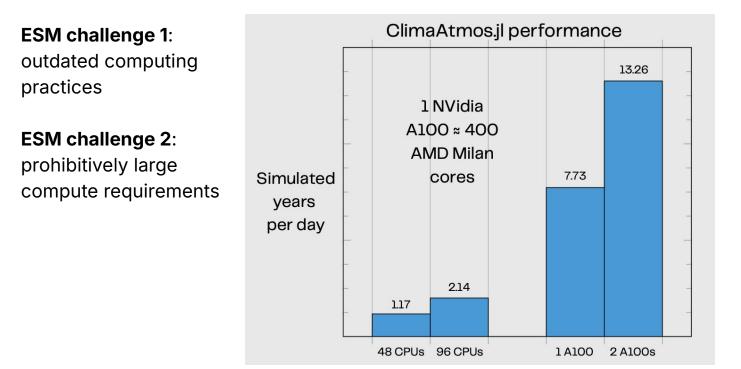
ClimaLand.jl captures the seasonal cycle

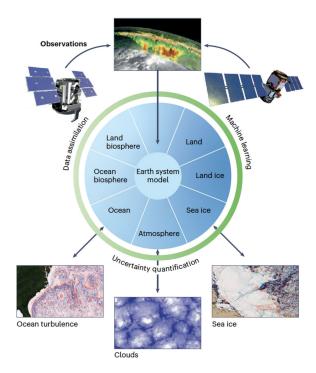


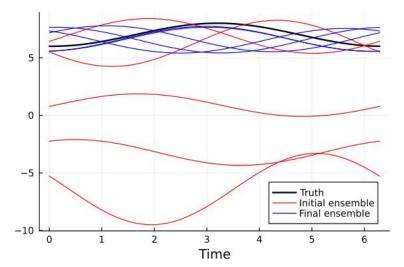
ClimaLand vs ERA5 seasonal cycle

Source: Deck, K., Braghiere, R. K., Renchon, A. A., Sloan, J., Bozzola, G., Speer, E., Mackay, B., Reddy, T., Phan, K., Gagne-Landmann, A. L., Yatunin, D., Charbonneau, A., Efrat-Henrici, N., Bach, E., Ma, S., Gentine, P., Frankenberg, C., Bloom, A., Wang, Y., Longo, M., Schneider, T., 2025: ClimaLand: A land surface model for advancing climate modeling with machine learning and data-driven parameterizations. Journal of Advances in Modeling Earth Systems, submitted.

Roadmap

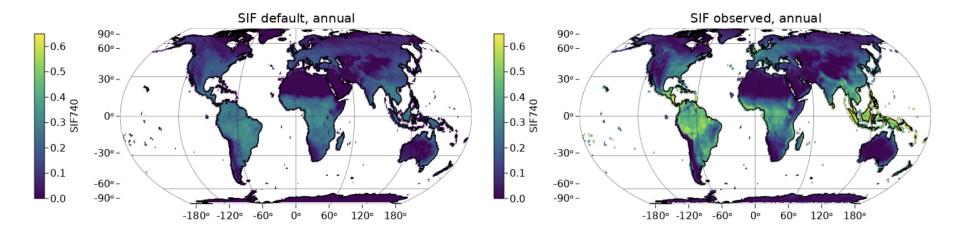

- What is an Earth System Model (ESM)?
- How do ESMs work?
- Challenges faced by ESMs
- Current capabilities of the CliMA model
- How does CliMA address the challenges faced by ESMs?


CliMA aims to tackle some main challenges of ESMs

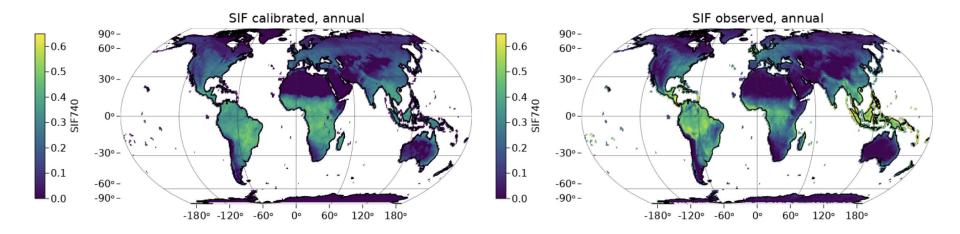

- 1. Outdated computing practices (Fortran)
- 2. Prohibitively large compute requirements
- 3. Estimating small-scale processes
- 4. Poorly-constrained parameters
- 5. Enabling scientific experiments is difficult

GPU compatibility enables improved performance in ClimaAtmos

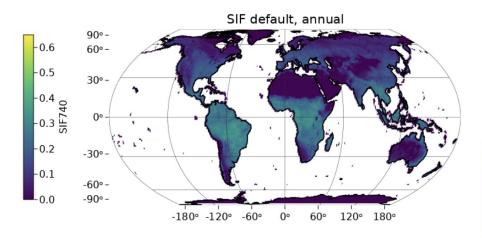
CliMA uses machine learning to calibrate parameters with observational data

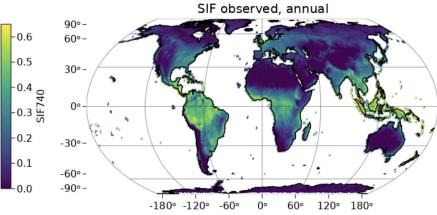


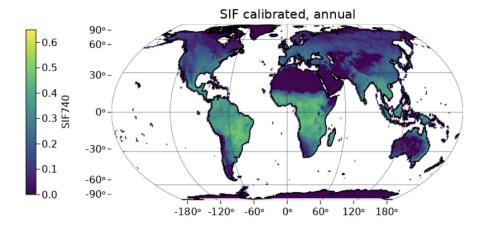
ESM challenge 3: estimating small-scale processes


ESM challenge 4: poorly-constra parameters

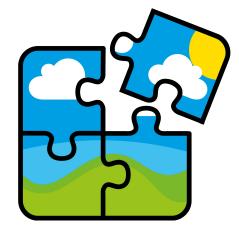
Land model calibration improved photosynthesis predictions




SIF: solar-induced fluorescence (measure of photosynthesis)


Land model calibration improved photosynthesis predictions

SIF: solar-induced fluorescence (measure of photosynthesis)



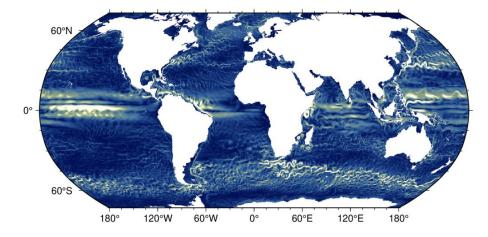
CliMA's modular design allows scientists to easily test new theories and compare models

- Modular design throughout the CliMA ecosystem
 - Atmosphere, land, ocean models
 - Model sub-components
 - Representations within model sub-components

• Open source \rightarrow scientific collaboration!

ESM challenge 5: enabling scientific experiments is difficult

Thank you to our sponsors!


CISCO Foundation

Want to run an ocean simulation on your own laptop?

Scan this to see an Oceananigans.jl tutorial →

github.com/CliMA/Oceananigans.jl

Contact: Julia Sloan jsloan@caltech.edu

References

- "Earth Day 2020: GEOS-5 Modeled Cloud Cover". Youtube, uploaded by NASA Scientific Visualization Studio, April 24, 2020.
- "Climate Simulation of Surface Air Temperature". Youtube, uploaded by NASA Climate Change, January 9, 2020.
- Paul Ullrich, Dept. of Energy Office of Science.
 energy.gov/science/doe-explainsearth-system-and-climate-models
- "Basics of Global Climate Models". Climate Hubs, U.S. Department of Agriculture.
- McSweeney, R., Hausfather, Z. "Q&A: How do climate models work?" Carbon Brief.
- Wagner, G.L., Silvestri, S., Constantinou, N.C., Campin, J-M., Hill, C., Ramadhan, A., Chor, T., Strong-Wright, J., Lee, X.K., Poullin, F., Souza, A., Burns, K.J., Marshall, J., Ferrari, R., 2025: High-level, high-resolution ocean modeling at all scales. Journal of Advances in Modeling Earth Systems, submitted.
- Deck, K., Braghiere, R. K., Renchon, A. A., Sloan, J., Bozzola, G., Speer, E., Mackay, B., Reddy, T., Phan, K., Gagne-Landmann, A. L., Yatunin, D., Charbonneau, A., Efrat-Henrici, N., Bach, E., Ma, S., Gentine, P., Frankenberg, C., Bloom, A., Wang, Y., Longo, M., Schneider, T., 2025: ClimaLand: A land surface model for advancing climate modeling with machine learning and data-driven parameterizations. Journal of Advances in Modeling Earth Systems, submitted.
- Yatunin, D., Byrne, S., Kawczynski, C., Kandala, S., Bozzola, G., Sridhar, A., Shen, Z., Jaruga, A., Sloan, J., He, J., Huang, D.Z., Barra, V., Knoth, O., Ullrich, P., Schneider, T., 2025: The CliMA atmosphere dynamical core: Concepts, numerics, and scaling. *Journal of Advances in Modeling Earth Systems*, submitted.