
1

Observability at 
Tigris Data

Peter Boros
Founding Engineer @ Tigris Data



About Me
- Founding Engineer at Tigris
- platform / databases
- Performance minded

- 1000s of production databases
- Mostly MySQL Percona, Dropbox, Zuora)



About Tigris
- S3 Compatible object storage
- Data is always close to the user

- Thousands of buckets
- Petabytes of data
- Billions of requests every day



Agenda
- Check out the title slide
- Check out the agenda
- Journey of Tigris Observability
- 3 pillars of observability 

- Logs 
- Traces 
- Metrics

- Battle scars
- Architectural recommendations
- Future directions



Takeaways
- Logging should be able to take extra load
- Sample traces
- Manage metrics cardinality



Started not so long ago
Tigris is a young company growing fast



Why do we need observability?

- We need to support our customers who are 
operating at scale

- Tighten the feedback loop, shipping faster
- This helps us more precisely optimize the 

system



3 Pillars of observability
- Metrics
- Logs
- Traces

Extended 3 pillars
- Visualization
- Continuous profiling



Observability 
as a Service



We used a couple of them

All of them are great
Providing all the pillars
There are many other options



Problematic:
- Number of custom metrics
- Number of hosts
- Amount of logs

Great if you can control these



We needed to do something
- We kept adding kubernetes cluster
- We kept adding regions 
- Users kept coming
- We wanted to provide users granular metrics
- We wanted to build some features on top of these 

granular metrics

→ Our projected cloud observability bill would have 
been 6 figures in months



Running our own observability stack
- Total infra cost is 12% of the total cloud 

based observability solution cost
- In-house workload
- Control, it will behave exactly how you want it



Our own stack





Tigris console



https://docs.google.com/file/d/1_TqMecDY6hy6_E1yUqOHwnD4s-DU5YQP/preview


Logging: Loki





Logging: Loki



Evaluated few log solutions
- Parse logs and index or not
- Famous for parsing and indexing: ELK
- We chose loki

- Optimized for the write path
- Object storage backend





Advantages
- Ingest anything
- Very versatile search options
- Very little indexing

Disadvantages
- Slow search that is done on the client side 



Searching on the client side
- Response time can be minutes
- Querying recent data is fast



Logging: Pitfalls





Donʼt size for the happy path.

Test that you can still ingest 
10100x logs volume. 

Learned this the hard way.



Story time: debug logs



Takeaway
Be prepared for an increased 

amount of logs



Traces: Tempo







- Extremely good insights
- Very very useful at the start 
- Problems come with traffic



- Lots of requests → lots of traces
- Billions of OK requests are not interesting
- Sampling

- Head: Trace a % of request
- Tail: Save the trace if it was interesting

- App level
- OpenTelemetry collector level

- Metrics and Logs are actually a subset of traces



Takeaway

Sample traces



Metrics: VictoriaMetrics



- We started on Mimir, but switched to 
VictoriaMetrics for efficiency reasons

- We have one set of metrics
- User facing data
- Public metrics
- Billing

- Extremely important, most learnings are here





Efficiency comes at a price
- No rebalancing of shards
- No healing of data for missing storage
- Good physical and logical backup options



Short term metrics:
- As granular as possible
- Used for troubleshooting, alerting
- Wiping them is fine as a resharding method
Long term metrics:
- Very low granularity is fine
- Source for billing, trends, etc
- Different backup characteristics



Metrics sources
- We use tally to create prometheus metrics
- Scraped by vmagent
- Originally one per cluster
- Sharded afterwards
- VictoriaMetrics operator helps a lot



Timers vs Histograms
- Tracking response time metrics is trickly
- Rolling aggregation

- Tricky with high metric churn rate
- Histogram

- Response time buckets
- Can be converted to response time quantile





- High cardinality metrics 
- Buckets / Tenants
- Infrastructure size (pods, machines)
- Storage tiers
- Object size 



- Multiplying quickly
- Queries over many time series is very expensive
- Unique tag combinations 

- Some expensive queries are valuable ones
- Overall traffic
- Overall response time in a region



Managing cardinality



Story time: exploding 
cardinality with errors





Application level aggregation
- Just double emit metrics and query the 

aggregate
- Works for us for buckets

For hosts and pods, this approach is not good.



Streaming aggregation
- Configured at the vmagent level
- Very efficient, done on the fly

- No backfills
- Can be inaccurate for histograms 



streamAggrConfig:
 keepInput: true
 rules:
   - match: requests_ok
     interval: 10s
     without:
       - instance
       - pod
     outputs:
       - total_prometheus

requests_ok:10s_without_instance_pod_total_prometheus



Streaming aggregation problems
- Asynchronous nature
- Summarizing histograms 



Recording rules with vmalert
- Backfills
- Can correct itself

- Frequency and lookback window can be different

- Inefficient
- Wish there was a similar, in-engine solution



Recording rules

spec:
 groups:
   - name: recording-rules-sjc-short1
     interval: 10s
     rules:
       - record: requests_aggr_ok:sum:some_name
         expr: |-
           sum by (http_method, region, size, env) (
             requests_ok{service="myservice"}
           )





Takeaway

Manage cardinality by 
aggregations



Takeaways
- Logging should be able to take extra load
- Sample traces
- Manage metrics cardinality



Future directions
- Continuous profiling
- Move fully to OpenTelemetry
- Make even more observability data accessible



Tigris
- Thanks to Tigris for sending me here
- If you want to try tigris out: storage.new
- Our public availability dashboard



Questions?



61

Thank you!

tigrisdata.com


