LW9Ls

Observability at
Tigris Data

Peter Boros
Founding Engineer @ Tigris Data

About Me

- Founding Engineer at Tigris
- platform / databases
- Performance minded

- 1000s of production databases
- Mostly MySQL (Percona, Dropbox, Zuora)

About Tigris

- S3 Compatible object storage
- Data is always close to the user

- Thousands of buckets
- Petabytes of data
- Billions of requests every day

Agenda

Check out the title slide

- Check out the agenda
- Journey of Tigris Observability
- 3 pillars of observability

- Logs

- Traces

- Metrics
- Battle scars
- Architectural recommendations
- Future directions

LlELCEVTEVE

- Logging should be able to take extra load
- Sample traces
- Manage metrics cardinality

Started not so long ago

Tigris is a young company growing fast

Why do we need observability?

- We need to support our customers who are
operating at scale

- Tighten the feedback loop, shipping faster

- This helps us more precisely optimize the
system

3 Pillars of observability
- Metrics

- Logs

- Traces

Extended 3 pillars
- Visualization
- Continuous profiling

Observability
as a Service

We used a couple of them

&

DATADOG Grafana Cloud

All of them are great
Providing all the pillars
There are many other options

Problematic:

- Number of custom metrics
- Number of hosts

- Amount of logs

Great if you can control these

We needed to do something

- We kept adding kubernetes cluster

- We kept adding regions

- Users kept coming

- We wanted to provide users granular metrics

- We wanted to build some features on top of these
granular metrics

- Our projected cloud observability bill would have
been 6 figures in months

Running our own observability stack

- Total infra cost is 1-2% of the total cloud
based observability solution cost

- In-house workload

- Control, it will behave exactly how you want it

Our own stack

T@‘JS

Buckets

Access Keys

Usage

Metrics

Tigris console

console.tigris.dev/flyio_d2ogemorjj2mw1iv4

ovaistariq
ot@tigrisdata.com

& Buckets
852.33 mb 1170
3 AccessKeys Total Storage Size 6 Bucket Total Objects

(] Usage

(@] Metrics

& Buckets Create Bucket +

Connect using a single global endpoint
Search
Name Region Created On Access
delete-me-123 Global 02/01/2024 :450m
foo-test Global 02/15/2024 2:30pm
foo-testl Global 02/15/2024 2:04pm
him-test Global 04/09/2024 10:23pm
him-test-1 Global 05/13/2024 4:56pm
him-test-2 Global 05/28/2024 9:54pm
ip-test Global 06/04/2024 12:01pm
ip-test2 Global 06/04/2024 1211pm
jmj-images Global 03/28/2024 10:430m
jmj-ip-test-2 Global 06/04/2024 %:45pm
jmj-private-test Global 04/03/2024 2:38pm
jmj-test-corsl Global 02/26/2024 5:22pm Public
jmij-test-cors2 Global 02/26/2024 5:30pm Public
mmsk-him-test Global 04/01/2024 :21lam Public

pboros-tigris-test Global 04/04/2024 7:50am

https://docs.google.com/file/d/1_TqMecDY6hy6_E1yUqOHwnD4s-DU5YQP/preview

Logging: Loki

Global availability © Last 24 hours

100.00%

IAD © Last 24 hours

100.00%

ORD @ Last 24 hours

100.00%

DFW © Last 24 hours

100.00%

EWR O Last 24 hours

(0J0K0]017

SJC @ Last 24 hours

100.00%

FRA ® Last 24 hours

100.00%

LHR @ Last 24 hours

100.00%

SIN O Last 24 hours

100.00%

SYD © Last 24 hours

100.00%

NRT © Last 24 hours

100.00%

GRU @ Last 24 hours

100.00%

JNB ® Last 24 hours

99997

AMS @ Last 24 hours

100.00%

Logging: Loki

Evaluated few log solutions
- Parse logs and index or not
- Famous for parsing and indexing: ELK
- We chose loki
- Optimized for the write path
- Object storage backend

l

=
e

Grafana loki

Read/write data flow

Write Path

:

Distributor

Read Path

T

Frontend

Query

Q - Querier :

Object Store (S3/GCP/Minl0/..)

(Memcaches x

A

Cluster Services

Advantages

- Ingest anything

- Very versatile search options
- Very little indexing

Disadvantages
- Slow search that is done on the client side

Searching on the client side
- Response time can be minutes
- Querying recent data is fast

Line contains v ® X Json v ® X Label filter expression v ® X + Operations
+ Expression Label level
e Operator =
Value error

{}y I= """ | json | level = “error’

Logging: Pitfalls

A

- N
GIZA PETRONAS
PYRAMID TOWERS

kubelet logs when
BUR) something doesn't

KHALIFA work

1000
900
800
700
600
500
400
200
100

Size central |

ONEIEETEUE Don't size for the happy path.

Test that you can still ingest

10-100x logs volume.

Lhappens
U Learned this the hard way.

’[@?:g-\re the Iogs’?[

|
|

Story time: debug logs

Takeaway

Be prepared for an increased
amount of logs

Traces: Tempo

Metrics backend

Storage

16

Q Search or jump to.. @ ctri+k + v ® » @
= Home > Explore <3 .
T Tempo ~ Bl X Close 83 Add to dashboard @ v & Q - X Tompoty ldi} %" Close gg Additodashboard S @ - 69 2 |5 _
v A (Tempo) 0 e 8§ i S {Tempo) (OJN - -}
Query type Search TraceQL JSON File Service Graph Query type Search TraceQL JSON Flle Service Graph
Build complex s using TraceQL to select a list of traces. Documentation Bulld complex querles using TraceQL to select a list of traces. Documentation
{ resource.service.name = "postgres” && duration > 300ms) 6489cfedc7cbc8333c6e450a3166376f
> Options Limit: 20 > Options. Limit: 20
+ Add query O Query history @ lInspector & Addquery O Query history © Inspector
Table shop-backend: article-to-cart e4sacfeacicbes333c6e450a31663761 Find...
Trace ID Start time Name Duration race Starl: 2023-05-23 15:48:12.443 Duration: 889.78ms Services:5 Depth: § Total Spans: 10
22245 444 1\
v 6489cfedc7cbc8333c6e... 2023-05-23 15:48:12 shop-backend article-to-cart 889 ms
Span ID Start time service.name Duration
a93fa97¢13b7732d 2023-05-23 15:48:12 postgres 305 ms g
Service... v > ¥ » i Ops 222.45ms 444.89ms 667.34ms 889.78ms
> add22545fbbb040be39c... 2023-05-23 15:47:45 shop-backend article-to-cart 980 ms v | shop-backend - Co———
> ac222cf2dd6das428f17e... 2023-05-23 15:47:42 shop-backend article-to-cart 979 ms v | shop-backend get-or O 557.3M
~ | article-service ger-: 430.45ms
> 46090d69bb8b7664d86... 2023-05-2315:47:39 shop-backend list-articles 810 ms _
v | article-service « 364.94ms

| postgres que

v | shop-backend authentic
| auth-service authen

v | shop-backend piace-art
~ | cart-service piace-a

| cart-service per:

. 204.68ms
O 173.06ms
. 136.03ms
. 520.04ms
o ——————5

. < 03.01ms 2

- Extremely good insights
- Very very useful at the start
- Problems come with traffic

Lots of requests - lots of traces
Billions of OK requests are not interesting
Sampling
- Head: Trace a % of request
- Tail: Save the trace if it was interesting
- App level
- OpenTelemetry collector level
Metrics and Logs are actually a subset of traces

LELCEVVE)

Sample traces

Metrics: VictoriaMetrics

- We started on Mimir, but switched to
VictoriaMetrics for efficiency reasons
- We have one set of metrics
- User facing data
- Public metrics
- Billing
- Extremely important, most learnings are here

Efficiency comes at a price

- No rebalancing of shards

- No healing of data for missing storage

- Good physical and logical backup options

Short term metrics:

- As granular as possible

- Used for troubleshooting, alerting

- Wiping them is fine as a resharding method
Long term metrics:

- Very low granularity is fine

- Source for billing, trends, etc

- Different backup characteristics

Metrics sources

- We use tally to create prometheus metrics
- Scraped by vmagent

- Originally one per cluster

- Sharded afterwards

- VictoriaMetrics operator helps a lot

Timers vs Histograms
- Tracking response time metrics is trickly
- Rolling aggregation
- Tricky with high metric churn rate
- Histogram
- Response time buckets
- Can be converted to response time quantile

HELP rpc_durations_histogram_seconds RPC latency distributions.

TYPE rpc_durations_histogram_seconds histogram
rpc_durations_histogram_seconds_bucket{le="-8.999999999999979%e-05"} 57
rpc_durations_histogram_seconds_bucket{le="1.0000000000000216e-05"} 90
rpc_durations_histogram_seconds bucket{le="0.00011000000000000022"} 120
rpc_durations_histogram_seconds_bucket{le="0.0003100000000000002"} 160
rpc_durations_histogram_seconds_bucket{le="0.0005100000000000003"} 168
rpc_durations_histogram_seconds_bucket{le="0.0007100000000000003"} 170
rpc_durations_histogram_seconds bucket{le="+Inf"} 170
rpc_durations_histogram_seconds_sum -8.00017415729221696258 /4
rpc_durations_histogram_seconds_count 170 '?

By DanielPenfield [CC BY-SA 3.0 (https://creativecommons.org/licenses/by-sa/3.0)], from Wikimedia Commons

- High cardinality metrics
- Buckets / Tenants
- Infrastructure size (pods, machines)
- Storage tiers
- Object size

Multiplying quickly
Queries over many time series is very expensive
Unique tag combinations

Some expensive gueries are valuable ones
- Overall traffic
- Overall response time in a region

Managing cardinality

¥ VMUl Query Raw Query Explore ~ Tools ~ Dashboards

Explore Prometheus Metrics
Explore Cardinality
Autocomplete Disable c Top Queries

Active Queries
~ Graph

Story time: exploding
cardinality with errors

CUSTOM PANEL DASHBOARDS CARDINALITY (3 2022-09-26 o] ®a

Number of entries per table
Time series selector 10 Focus label @@ Autocomplete ®
Analyzed 52781 series with 619437 "label=value" pairs at 2022-09-26 . Show top 10 entries per table.
Metric names with the highest number of series

111 TABLE A~ GRAPH
Metric name Number of series |, Percent of series Action
github_downloads_total 2593 @ 4.91% ®
container_blkio_device_usage_total 1902 0 3.60% ®
flag 1619 0 3.07% ®
container_tasks_state 1370 ' 2.60% ®
kubelet_runtime_operations_duration_seconds_bucket 1185 ' 2.25% ®
container_memory_failures_total 1096] 2.08% ®
storage_operation_duration_seconds_bucket 1022 | 1.94% ®
vm_index_search_duration_seconds_bucket 694 | 131% ®
vm_promscrape_service_discovery_duration_seconds_bucket 604 ' 1.14% @
vm_http_request_duration_seconds_bucket 597 ' 1.13% @

Application level aggregation

- Just double emit metrics and query the
aggregate

- Works for us for buckets

For hosts and pods, this approach is not good.

Streaming aggregation
- Configured at the vmagent level
- Very efficient, done on the fly

- No backfills
- Can be inaccurate for histograms

streamAggrConfig:
keepInput: true
rules:

- match: requests_ok
interval: 10s
without:

- instance
- pod
outputs:
- total_prometheus

requests_ok:10s_without_instance_pod_total_prometheus

Streaming aggregation problems
- Asynchronous nature
- Summarizing histograms

Recording rules with vmalert
- Backfills
- Can correct itself
- Frequency and lookback window can be different

- Inefficient
- Wish there was a similar, in-engine solution

Recording rules

spec:
groups:
- name: recording-rules-sjc-shorti
interval: 10s
rules:
- record: requests_aggr_ok:sum:some_name
expr: |-
sum by (http_method, region, size, env) (
requests_ok{service="myservice"}
)

execute aggregating

recordi

vmalert

persist

rules

VM cluster with raw data

vmselect \\\\\\£§§

vmstorage

vminsert

VM cluster with aggregated data

vimselect \\\\\\iés

vimstorage

vminsert

LELCEVVE)

Manage cardinality by
aggregations

LlELCEVTEVE

- Logging should be able to take extra load
- Sample traces
- Manage metrics cardinality

Future directions

- Continuous profiling

- Move fully to OpenTelemetry

- Make even more observability data accessible

Tigris
- Thanks to Tigris for sending me here

- If you want to try tigris out: storage.new
- Our public availability dashboard

Questions?

+ +

Thank you!

NS
RN
R

NN
NN
RN

TN
T

tigrisdata.com

