
Fast and Cheap
Observability

Kiran Gollu,

Co-founder & CEO



What I will talk about today

Key challenges with current tools1

How are we addressing them today?2

Key shifts defining the future3

A new first principles architectural
approach that is faster AND cheaper

4

What organizations need to do to stay
ahead

5





What is Observability?

Understand what’s happening inside a
system by looking at its outputs—logs,
metrics, and traces.

1

It goes beyond basic monitoring, helping
engineers quickly spot issues and figure
out why they’re happening.

2



Typical Observability Stack



Legacy
Observability

tools are broken!

Too Slow

Too Complicated

Too Expensive



What changed?

Switch to cloud native and AI

Explosion of data & micro-services 

3rd line item in overall engineering spend
after people and cloud, growing 2x faster



so what?
How does it impact various teams?



App engineers don't care about breaking prod, i'm
responsible, get woken up at 2am.

1

It's not reliable as we scale. it just doesn't work.2

Scaling our open source stack is hard3

Reduce observability to reduce costs4

"it's slow, queries time out all the time despite overprovisioning"

"Rebalancing and upgrading elastic clusters is painful"

"My boss asked me to reduce costs, but my product engineers
don't like me anymore for blocking their metrics or removing logs"



Why is troubleshooting so hard? Too many dashboards,
too many alerts.

1

I can't easily figure out what we send, what we use! 2

Why can't my observability system just answer any
question at any cardinality fast?

3

Why can't app teams stop sending crazy scale logs and
metrics, our customer experience sucks 

4



My users notice problems before we do.1

PMs constantly bug us with questions and interrupt our
work. why can't they figure it out themselves?

2

Why can't I get answer to my questions asap?3

I want to get in and get out as fast as possible4

"are there any regressions due to latest release?"

"it's a crime to high cardinality data"

"too many tools, it's complicated to debug - where do I start?"



We are heading to IPO. My CFO is asking me to reduce
costs to improve our margins.

1

Commercial tools are expensive, scaling open source
costs too much people time and CX challenges. What
should I do?

2

We can't scale cost-effectively 3

Why should I build cost attribution features myself
regardless of vendor of choice?

4

We are sick of migrations - weird lock ins, took painful
9+ months.

5



Using observability tools is not very intuitive at all. I've to
constantly rely on my engineers for any questions.

1

Is there any regression in the latest release?2

How do I measure product usage and adoption? 3

How do I measure the performance and availability for
our premium customers? Are they happy?

4



okay it impacts multiple teams,
does any existing tools solve these problems?



Both Open Source and Commercial
tools have challenges today!

Too Slow Too Complicated Too Expensive

Open Source
(Elastic,

Prometheus,
Grafana)

Not Reliable => OOMs, query
timeouts

Not Horizontally Scalable
Management Overhead

Breaks at Scale (> 2M+ time
series/hour)

Army of engineers & SREs :-)
Over-provision CPU &

Memory

Commercial
(Datadog,
Dynatrace,

Splunk,
Grafana Labs)

Too many dashboards!
Gap: experienced vs new engineers

Not optimized for E2E experience
Each solves a piece of the puzzle

Balance budget and visibility
Hard to do cost attribution
Lock-ins: Migrations takes

months/quarters!

3rd highest spend after
people and cloud infra

20-25% of Cloud bill



How are we solving them today?



Tiered storage helps, but not enough



Why legacy architectures are no
longer enough for cloud and AI

Not architected for cost-efficiency, instead for scalability
and experience

1

Row based data stores won’t work for high cardinality use
cases

2

Expensive & Slow: SSD disks (hot storage), object storage
(long term backup)and replication adds more cost!

3

Always running compute even when there are no queries
on the system

4

Based on lift and shift on-prem architectures5



Why now?

Observability has become a data problem1

Separation of Storage and Compute
Phenomenon (Snowflake)

2

Serverless Wave3

Generative AI4

Innovations in data warehousing, DB, data streaming architectures

Performance inprovements (Parallelism & cold start latency)



But, observability data has different properties

You mostly care about recent data1

Time series data is highly compressible2

> 95% of data you send is never queried3

Queries need to be fast (p99 latency < 3
seconds)

4

Complex aggregations are required, yet
speed is important!

5



What are the requirements of an ideal solution?



1. Observability is all about
resolving incidents quickly,

getting answers fast.



2. Architected for cost-efficency from Day 1



3. Simple, OSS compatible with no-lockin



Build a new time series database
exploiting these properties

A new frst principles appraoch
Snowflake of observability



A new set of
problems require
a fundamentally
new cloud native
architecture

AZ Aware
Zero egress costs

Cost efficient storage
No downsampling

Durable

Serverless
Compute only when needed
Blazing fast queries

Time partitioned objects
High cardinality with
Custom file format

Reduce MTTR with
AI generated dashboards

No global index

API

Receiver

Compaction

Alert

Engine

Insights

Engine

PromQL

Engine

Caching

Engine



Everything is in S3. It's serverless. No disks at all.



What are the results?



Dashboard-less debugging: 5x faster



10x lower compute costs

Compute1

Memory2

1. Serverless: don't pay for compute when not using

2. Intelligent caching => fast performance

1. No global indexing

2. Custom in-memory representation of metrics



24x lower storage costs



zero networking costs

No replication costs1

Zero egress costs during ingestion with
direct link

2

Zero cross-AZ networking costs3



What organizations need to do stay ahead?

Reevaluate existing observability investments
Are current tools providing fast, actionable insights

Can they scale cost-effectively as systems become more complex?

Leverage AI for faster alert troubleshooting

Prioritize cost-efficiency and scalability
Move away from monolithic, high-cost storage models.

Adopt modern cloud-native architectures

Demand Simplicity
Observability should be an enabler, not an additional burden.

1-click deployment and migration

1

2

3

4



What I spoke about today

Key challenges with observability today:
Cost + debugging speed

1

Why legacy architectures won’t work for
cloud native and AI workloads

2

A new custom database built from ground
up leveraging Serverless + S3 architecture

3

What organizations need to do to Stay
ahead

4

5x faster and 10x cost-efficient



https://play.oodle.ai
Live demo: (no login required)



Thank you!
Kiran Gollu - kiran@oodle.ai

Questions?


