
Application Monitoring and Tracing in
Kubernetes: Avoiding Microservice Hell!

David vonThenen
@dvonthenen
http://dvonthenen.com
github.com/dvonthenen



Agenda

• Why do we care?
• Introduction to Metrics

• Introduction to Tracing
• Demo

• Q&A



Why do we care?



Microservices Are Awesome!

• Discrete Set of Functionality
• Resilient / Tolerates Failure

• Distributed / Highly Scalable
• Technology Freedom

• Autonomy of Dev Teams
• Enables Continuous Delivery



Can Be Your Worst Nightmare!

• Complex to Build
• Decentralized Nature

• Interface / Docs Required
• Operational Complexity

• Transaction Management
• Visibility is Difficult



Microservices at Scale (Excuse the pun)

https://www.slideshare.net/aspyker/reinvent-2016-container-scheduling-execution-and-aws-integration



Simple Failures



Complex Failures



Who is Talking to Who?



One Bad Apple…



Logs Aren’t Enough 



Gain Visibility Now!



The Answer is…

• Metrics/Instrumentation
– Measure properties of a 

given system
– Alarms and Notifications

• Tracing
– Observe interactions at a 

request level
– Measure work in time



Introduction to Metrics



What are Metrics?

• Metrics are a quantifiable set of measurements of a 
property for a given system, process, or component.
– Performance counters
– Instrumentation

• Observe behavior

• React to changes 



Prometheus

• Open-source systems monitoring and 
alerting project

• Cloud Native Compute Foundation 
(CNCF) hosted project

• Originally built by SoundCloud
• Data model with time series data
• https://github.com/prometheus/prometheus



Let’s Deploy Prometheus

+



Architecture



Types of Metrics

• Counter – only increases in value
• Gauge – value goes up or down over 

time
• Histogram – samples observations 

and counts them over buckets
• Summary – histogram plus a 

summation of value



Alerts

• Create rules based on observed metrics
• Alerts trigger actions to be taken
– Email
– Slack
– Webhooks

• Why do we care?
– Enables dynamic scale up and down



Prometheus Language Bindings

• 15 official and community supported libraries
– Go, Java, Python, Ruby, C++, etc

• https://prometheus.io/docs/instrumenting/clientlibs/



Introduction to Tracing



What is Tracing?

• Enables observability of a given 
transaction as it moves through a 
(distributed) system

• Allows visualization of which 
microservice instances are involved

• Tracks the path through the software 
stack + time metrics



Jaeger

• Open-source distributed tracing system
• CNCF hosted project

• Originally built by Uber
• OpenTracing compatible

• Root cause and observe performance
• https://github.com/jaegertracing/jaeger



Let’s Deploy Jaeger

+



Architecture



Traces and Spans



Jaeger Language Bindings

• 5 official and bunch of community supported libraries
– Go, Java, Python, node, C++
– http://jaeger.readthedocs.io/en/latest/client_libraries/



Metrics vs Tracing

• Metrics
– Gives a singular per node, 

instance, or component 
view of the world

– Health checks, 
performance monitoring, 
etc

– Alerts and reaction to 
change

• Tracing
– Follows a single 

transaction, API call, etc
through a given system or 
application

– Think what a stack trace 
provides except tracing is 
doing it in a distributed 
fashion



Demo



Demo Time!



Demo Configuration

• Kubernetes 1.7
• Prometheus 2.1

• Jaeger 1.0
• How-to: 

https://github.com/dvonthenen/proposals/tree/master/2018_SCALE16



David vonThenen
{code} – Dell Technologies
@dvonthenen
http://dvonthenen.com
github.com/dvonthenen

Thank You


