A deep dive into Linux

Networking
Mohamed Elsakhawy

Agenda

- Why this presentation ?

- The network stack

- Core concepts

- The NIC driver

- The network stack structs

- The transmit and receive paths
- The challenge of small packets

Why this presentation

- It's complicated
- Very complicated
- https://github.com/Saruspete/LinuxNetworking = Adrien Mahieux
- That’s just part of it

- As a Linux engineer
- You don’t need all of that
- But knowing always helps

https://www.google.com/url?q=https://github.com/Saruspete/LinuxNetworking&sa=D&source=editors&ust=1742147729510911&usg=AOvVaw16nBbkZCIPF1kjBvvQMF2b

The Linux Network stack

- Responsible for Network transmit/receive

- Provides an abstraction layer
Reachable by syscalls

- Can be divided into 7 components
- Packets flow down
- Netffilter is engaged using hooks

Application Layer

Socket Layer
}

TCP/UDP Layer

IP Layer Netfilter Hooks

‘ Link Layer

)

Physical Layer

Concepts

- User space vs Kernel space

- NIC TX and RX rings

- IRQ

- DMA

- NAPI vs Interrupt driven receive
- RPS and RSS

- RFS

- QDISC

User space vs Kernel space

- Logical segregation of privilege
- Application run in user space

Limited access

- NIC drivers run in the kernel space

Privileged mode
Direct access to hardware
Memory management, CPU..etc
Access to memory regions

- controlled , e.g DMA

IRQs and softIRQs

Interrupt request
- Has Associated Interrupt Service Routines (ISR)

ISRs essentially
- Specify how to handle this interrupt

Interrupts have a problem
- The CPU stops doing what it's doing

Comes the softirq (raised by the kernel itself)
- Not blocking

NIC TX and RX rings

- Have pointers to start/end addresses of packet contents

- Not the packet data
- Hence they are called “descriptor rings”

- Packet contents are in packet buffers
- The memory areas DMA'able

IRQ Handler
Poll list
softirq

Kernel Space

B]\V/2

- The DMA engine
- RX'ring contains pointers to RAM locations to IRQ Handler
write the packet contents to 1. Poll list

softirq

We saved the host CPU, DMA is executed by
the DMA Controller Kernel Space

Packet Buffer

Get Rx Desc. .
. || Write Packet (DMA

NAPI and Interrupt driven receive

- Before NAPI = Interrupt per packet
- High overhead

- NAPI = New API

- Interrupt and polling
- Aninterrupt generated at first packet
- Interrupts disabled
- Device put into polling mode
- No packet
- Interrupt re-enabled

New Packet ?

- In a single queue NIC
- By default, the CPU that services the interrupt

_ Wire NIC
Processes the packet up the network stack -_

- Thatis a problem !

- Systems have more than one core Which CPU 2
- And NICs have multiple queues | |[———
- Better performance can be achieved by

- Assigning more cores to handle the multiple queues New Packet ?
- This can achieve better performance ?
- But..... i
]

- Order of the packets is important

- We need to assign flows to CPU cores

- At a high level
- Same source, same destination

Random ?

New Packet ?

RPS and RSS

- RSS: Receive-Side Scaling

- multi queue-receive
- NIC has multiple queues
- Hash computation / Flow determination on the NIC Recleves [RQ-and

determines the flow
(hash)

- RPS: Receive Packet Steering (RPS)

- Directs packets to specific CPU for processing - NIC
- One CPU receives the interrupts and computes the

hash
- Determine the flow, and the CPU that services the
packet

Receive Flow Steering

- Goes a step further
- RFS tracks consumer app in the userspace
- Associates with flow

- Flow processed on the same CPU core that the consumer app runs on

- High cache hit
- Better network performance Application Layer

Assigns who services the packet

‘ RFS

Wire ﬂ{ NIC

QDISC

- Part of the Traffic control (TC)

- Packet transmission
- Queueing disciplines
- Think of it a policies for packet transmissions
- FIFO is a policy
- And the most common one

Driver queue

v
IRQ

v

DMA

\ 4
Transmit

The NIC driver

The NIC driver

Runs in the kernel space
Three core functions
Allocate RX/TX queues

RX/TX descriptor rings

Initialize the NIC

Set the value of the NIC registers properly

Handling interrupts

For TX and RX
register “Interrupt service handlers/routines”

IRQ Handler
Packet Buffers
Poll list
X RX

softirq

Kernel Space

NIC

The structs

linux / drivers / net / ethernet / intel / ixgbe / ixgbe.h

Code Blame

- The net _device struct
- struct used to define a network device in the kernel

. . et_device *netdev);

- Defined at the kernel side et not_device netdev);

ixgbe_adapter *adapter);
ixgbe_adapter *adapter);

ixgbe_cb {
* IXGBE_FCOE *

https://qithub.com/torvalds/linux/tree/master/drivers/net/ethernet/intel/ixgbe i

ict net_device *netdev);

t ixgbe_adapter uct ixgbe_ring *);
ixgbe_ring *);
t ixgbe_ring *);
t ixgbe_ring *);
ixgbe_adapter struct ixgbe_ring *);
t ixgbe_adapter *, uct ixgbe_ring *
ixgbe_adapter *adapter);
t ixgbe_adapter *adapter);
ixgbe_adapter *adapter);

ct ixgbe_adapter *adapter);

ixgbe_adapter *adapter, u16 device_ id,

https://www.google.com/url?q=https://github.com/torvalds/linux/tree/master/drivers/net/ethernet/intel/ixgbe&sa=D&source=editors&ust=1742147731327077&usg=AOvVaw2AK1Ee9qQDgmzuW3rZ-G1a

The sk_buff struct

- The main structure representing a packet
- Only packet metadata , not the contents
- Exists at the implementation of all layers of the OSI model
- Unique
- Pointers to next sk_buff loage frao)
- Shared between network stack layers Tt

+ [page frag]
- So who creates the first sk_buff for a packet ?
- You guessed it right , the driver !

+ frag list

The transmit vs receive paths

Application Application

I Socket layer Socket layer I
— ——
I Network Stack I

I Network Stack I

RSS/RPS

[ormrome | v |
| N
I TX Ring I

Signal the NIC

NIC Receive

- When a NIC receives a
packet:

Fetch a descriptor
DMA Packet to Packet
buffers

RX Interrupt

Poll_list

RPS/RFS

Softirq

Packet Buffers

Kernel Space

IRQ Handler

Poll list

softirq

The transmit path

- Application runs in userspace

- When a packet is ready to be sent, the sendto syscall is used
- sk _buff created, contents set in packet buffer

- QDISC controls the queue

- TX Descriptor ring set

- NIC picks up the TX descriptor

DMAs the packet contents from packet buffer
Sends packet on wire

The challenge of small packets

- A Packet:

- Smallest unit in the IP layer
- Too many packets
- Lower latency, and less throughput
- NFV loves small packets
- Jumbo frames
- Larger packets
- Higher throughput and higher latency

- Cost-benefit analysis
- For small packets, we want the least network stack engagement

In a virtualized environment

User-Space -

- Network stack on the host and;
- Network stack inside the VM

- Very expensive overhead

- For every packet
- And small packets means higher overhead NIC

Driver
Packet Buffers

Kernel Space

Saturating a 10-Gbit NIC over 65-byte MTU inside a VM

Traditional layout, very hard to do

Some solutions bypass the host network stack
VFIO/IOMMU

Moving the NIC to userspace
Something needs to manage the NIC in userspace

We can’t have a physical NIC for every VM

DPDK-enabled OVS
SR-IOV

Moving NIC to userspace

- In user-space, we need to:

- Access NIC’s onboard registers
- Handle Interrupts
- Allocate memory to DMA from/to

- VFIO & IOMMU

- Bypass the network stack

User-Space User-Space

™ RX Packet Buffers

Driver

VFIO Packet Buffers

Kernel Space Kernel Space

NIC NIC

VFIO & IOMMU

- VFIO

- Passthrough style driver

- Maps user-space memory regions to DMA

- Allows direct device access in userspace

- NIC ownership to user space process
Security ?

- IOMMU provides Isolation & Address translation
- Ensures requestor NIC has rights to DMA memory region
- DMA regions are Virtual addresses (IOVA)

- VFIO pokes a hole through the kernel space

Traditional layout of VM Network in Openstack

ovsdb-server

Kernel space

[tun(iap)|
Mo I _vetn |
Stack

il _ ovs
- Forwarding
br-tun lane
NIC Driver P

DPDK

Data plane development kit
Even with VFIO/IOMMU (VT-d for intel)

- We can’t have a NIC per application
- We need something to do the functionality of the network stack
- But faster

At a high-level
- DPDK provides provides a framework for faster packet processing in userspace

- Customer memory management
- Polling based sending/receiving

OVS-DPDK

- Switching in the userspace
- Based on openvswitch

DPDK-enabled Neutron OVS deployment

virtio Drlver
Ez

patch-tun vhost-user

ovsdb-server

ovs-vswitchd

patch-int
“ VFO

SR-I0V

Virtualization of Input/Output devices

Physical Functions “PF” vs Virtual Functions “VF”
Single PF, many VFs

VMs have direct access to VFs

No host/switching overhead, i.e. no OVS

VM communicates directly with physical network

VF| VF| VF| VF| VF

NIC

ovsdb-server
Guest

VF Driver

vhost-user

ovs-vswitchd
User space

Kernel space ‘ " PF Driver Kernel space

Thank you, Questions

