
A deep dive into Linux
Networking
Mohamed Elsakhawy

Agenda

- Why this presentation ?
- The network stack
- Core concepts
- The NIC driver
- The network stack structs
- The transmit and receive paths
- The challenge of small packets

Why this presentation

- It’s complicated
- Very complicated
- https://github.com/Saruspete/LinuxNetworking ⇒ Adrien Mahieux
- That’s just part of it

- As a Linux engineer
- You don’t need all of that
- But knowing always helps

https://www.google.com/url?q=https://github.com/Saruspete/LinuxNetworking&sa=D&source=editors&ust=1742147729510911&usg=AOvVaw16nBbkZCIPF1kjBvvQMF2b

The Linux Network stack

- Responsible for Network transmit/receive
- Provides an abstraction layer

- Reachable by syscalls
- Can be divided into 7 components
- Packets flow down
- Netfilter is engaged using hooks

Concepts

- User space vs Kernel space
- NIC TX and RX rings
- IRQ
- DMA
- NAPI vs Interrupt driven receive
- RPS and RSS
- RFS
- QDISC

User space vs Kernel space

- Logical segregation of privilege
- Application run in user space

- Limited access
- NIC drivers run in the kernel space

- Privileged mode
- Direct access to hardware
- Memory management, CPU..etc
- Access to memory regions

- controlled , e.g DMA

IRQs and softIRQs

- Interrupt request
- Has Associated Interrupt Service Routines (ISR)

- ISRs essentially
- Specify how to handle this interrupt

- Interrupts have a problem
- The CPU stops doing what it’s doing

- Comes the softirq (raised by the kernel itself)
- Not blocking

NIC TX and RX rings

- Have pointers to start/end addresses of packet contents
- Not the packet data
- Hence they are called “descriptor rings”

- Packet contents are in packet buffers
- The memory areas DMA’able

DMA

- The DMA engine
- RX ring contains pointers to RAM locations to

write the packet contents to
- We saved the host CPU, DMA is executed by

the DMA controller

NAPI and Interrupt driven receive

- Before NAPI ⇒ Interrupt per packet
- High overhead

- NAPI ⇒ New API
- Interrupt and polling
- An interrupt generated at first packet

- Interrupts disabled
- Device put into polling mode
- No packet

- Interrupt re-enabled

- In a single queue NIC
- By default, the CPU that services the interrupt

- Processes the packet up the network stack
- That is a problem !

- Systems have more than one core
- And NICs have multiple queues
- Better performance can be achieved by

- Assigning more cores to handle the multiple queues
- This can achieve better performance ?

- But …..
- Order of the packets is important

- We need to assign flows to CPU cores
- At a high level

- Same source, same destination

RPS and RSS

- RPS: Receive Packet Steering (RPS)
- Directs packets to specific CPU for processing
- One CPU receives the interrupts and computes the

hash
- Determine the flow, and the CPU that services the

packet

- RSS: Receive-Side Scaling
- multi queue-receive
- NIC has multiple queues
- Hash computation / Flow determination on the NIC

Receive Flow Steering

- Goes a step further
- RFS tracks consumer app in the userspace

- Associates with flow
- Flow processed on the same CPU core that the consumer app runs on

- High cache hit
- Better network performance

QDISC

- Part of the Traffic control (TC)
- Packet transmission

- Queueing disciplines
- Think of it a policies for packet transmissions
- FIFO is a policy

- And the most common one

The NIC driver

- The NIC driver
- Runs in the kernel space

- Three core functions
- Allocate RX/TX queues

- RX/TX descriptor rings
- Initialize the NIC

- Set the value of the NIC registers properly
- Handling interrupts

- For TX and RX
- register “Interrupt service handlers/routines”

The structs

- The net_device struct
- struct used to define a network device in the kernel
- Defined at the kernel side

https://github.com/torvalds/linux/tree/master/drivers/net/ethernet/intel/ixgbe

https://www.google.com/url?q=https://github.com/torvalds/linux/tree/master/drivers/net/ethernet/intel/ixgbe&sa=D&source=editors&ust=1742147731327077&usg=AOvVaw2AK1Ee9qQDgmzuW3rZ-G1a

The sk_buff struct

- The main structure representing a packet
- Only packet metadata , not the contents
- Exists at the implementation of all layers of the OSI model

- Unique
- Pointers to next sk_buff
- Shared between network stack layers

- So who creates the first sk_buff for a packet ?
- You guessed it right , the driver !

https://docs.kernel.org/networking/skbuff.html

The transmit vs receive paths

-

Signal the NIC

NIC Receive

- When a NIC receives a
packet:

- Fetch a descriptor
- DMA Packet to Packet

buffers
- RX Interrupt
- Poll_list
- RPS/RFS
- Softirq

The transmit path

- Application runs in userspace
- When a packet is ready to be sent, the sendto syscall is used
- sk_buff created, contents set in packet buffer
- QDISC controls the queue
- TX Descriptor ring set
- NIC picks up the TX descriptor

- DMAs the packet contents from packet buffer
- Sends packet on wire

The challenge of small packets

- A Packet:
- Smallest unit in the IP layer
- Too many packets

- Lower latency, and less throughput
- NFV loves small packets

- Jumbo frames
- Larger packets
- Higher throughput and higher latency

- Cost-benefit analysis
- For small packets, we want the least network stack engagement

In a virtualized environment
VM1VM2

App App

Host

- Network stack on the host and;
- Network stack inside the VM
- Very expensive overhead

- For every packet
- And small packets means higher overhead

- Saturating a 10-Gbit NIC over 65-byte MTU inside a VM
- Traditional layout, very hard to do

- Some solutions bypass the host network stack
- VFIO/IOMMU

- Moving the NIC to userspace
- Something needs to manage the NIC in userspace
- We can’t have a physical NIC for every VM

- DPDK-enabled OVS
- SR-IOV

Moving NIC to userspace

- In user-space, we need to:
- Access NIC’s onboard registers
- Handle Interrupts
- Allocate memory to DMA from/to

- VFIO & IOMMU
- Bypass the network stack

VFIO & IOMMU

- VFIO
- Passthrough style driver
- Maps user-space memory regions to DMA
- Allows direct device access in userspace
- NIC ownership to user space process
- Security ?

- IOMMU provides Isolation & Address translation
- Ensures requestor NIC has rights to DMA memory region
- DMA regions are Virtual addresses (IOVA)

- VFIO pokes a hole through the kernel space

Traditional layout of VM Network in Openstack

DPDK

- Data plane development kit
- Even with VFIO/IOMMU (VT-d for intel)

- We can’t have a NIC per application
- We need something to do the functionality of the network stack

- But faster
- At a high-level

- DPDK provides provides a framework for faster packet processing in userspace
- Customer memory management
- Polling based sending/receiving

- OVS-DPDK
- Switching in the userspace
- Based on openvswitch

DPDK-enabled Neutron OVS deployment

 Virtualization of Input/Output devices
 Physical Functions “PF” vs Virtual Functions “VF”
 Single PF, many VFs
 VMs have direct access to VFs
 No host/switching overhead, i.e. no OVS
 VM communicates directly with physical network

SR-IOV

Thank you, Questions

