
9.2 to 15 and beyond
A case study of a tricky upgrade path

Nick Meyer @ Academia.edu
March 7 2025, SCaLE 22x

9.2 to 15 and beyond
A case study of a tricky upgrade path

Nick Meyer @ Academia.edu
March 7 2025, SCaLE 22x

Prelude: 2008
A database is born

DB as an Archaeological Site

● “Written record” (slack? git? email?)
● Version: 8.3? Earlier?
● Eventually upgraded to 9.2

○ At some point before 2018

Mario Modesto Mata
Creative Commons Attribution-Share Alike 3.0 Unported

https://creativecommons.org/licenses/by-sa/3.0/deed.en

A bit about me (Nick Meyer)

● Academia.edu
● https://github.com/aristocrates
● Team lead of Platform Engineering
● Areas of focus

○ Developer experience
○ Interface: application and infra
○ Data layer
○ Postgres

https://www.academia.edu/
https://github.com/aristocrates

Slides: https://github.com/aristocrates/SCaLE22x_2025

https://github.com/aristocrates/SCaLE22x_2025

What is the point?

What is the point of telling this story?

● Empathy
● Emotion
● Technical details ignorable

○ (but feel free to pay attention)

● Are you:
○ A contributor?
○ New community member?
○ Doing a similar upgrade?

“Version-splaining”

ver· sion· splain (verb)

/ ˈvɜr ʒənˌspleɪn /

To tell someone they should upgrade when they already
said they are working on it.

“Vertical” sharding

Chiswick Chap
Creative Commons Attribution-Share Alike 4.0 International

https://creativecommons.org/licenses/by-sa/4.0/deed.en

“Vertical” sharding

Chiswick Chap
Creative Commons Attribution-Share Alike 4.0 International

“main”

https://creativecommons.org/licenses/by-sa/4.0/deed.en

“main”

“main”

What is “main”?

● 600 tables
● 5 TB
● “Creative” use of PL/pgSQL functions

○ and custom types, constraints, etc

9.6 15

pg_upgrade

pglogical

9.2

9.6 15

9.2

log4j

python2
sunset

OS
upgrade

Server bill
cost-cutting

rails
upgrade

JCenter
SunsetMore server bill

cost-cutting

Fix backup
system

Part 1
9.2 -> 9.6

Why stop at 9.6?

● https://www.postgresql.org/docs/release/8.4.0/
● “Release Date: 2009-07-01”

commit 2169e42bef9db7e0bdd1bea00b81f44973ad83c8
Author: Neil Conway <neilc@samurai.com>
Date: Sun Mar 30 04:08:15 2008 +0000

Enable 64-bit integer datetimes by default, per previous
discussion.

This requires a working 64-bit integer type. If such a type cannot
be found, "--disable-integer-datetimes" can be used to switch
back to the previous floating point-based datetime implementation.

https://www.postgresql.org/docs/release/8.4.0/

--disable-integer-datetimes

● pg_upgrade --check complains
● => We built our own postgres binary

○ And we did that all the way to 9.2

● Postgres 10 removed this flag

pg_upgrade with streaming replicas

Step 1: Bring up “new tree” replicas

*Will be 9.6 later

Primary
New Primary

Readers New
readers

9.2

9.2

9.2*

9.2*

physical

pg_upgrade with streaming replicas

Step 2: Block writes

Primary
New Primary

Readers New
readers

9.2

9.2

9.2*

9.2*

Write

Read

physical

pg_upgrade with streaming replicas

Step 3: Promote new primary

Primary
New Primary

Readers New
readers

9.2

9.2

9.2*

9.2*

Write

Read

pg_upgrade with streaming replicas

Step 4: Follow the simple 17 step guide

https://www.postgresql.org/docs/9.6/pgupgrade.html

(But also reference the latest version of those docs:
https://www.postgresql.org/docs/17/pgupgrade.html)

https://www.postgresql.org/docs/9.6/pgupgrade.html
https://www.postgresql.org/docs/17/pgupgrade.html

Diving into the details

pg_upgrade with streaming replicas

Step 4a: Install newer version, and initdb

New Primary
9.2
- bin dir
- PGDATA

9.6
- bin dir
- PGDATA

pg_upgrade with streaming replicas

Step 4b: Stop postgres on new primary

(but keep it running on the replicas)

New Primary
9.2
- bin dir
- PGDATA

9.6
- bin dir
- PGDATA

pg_upgrade with streaming replicas

Step 4c: Check that pg_controldata (checkpoint) matches

New Primary

New
readers

9.2*

9.2*

$ pg_controldata $PGDATA | grep 'Latest checkpoint location'
Latest checkpoint location: 0/41933E90

$ pg_controldata $PGDATA | grep 'Latest checkpoint location'
Latest checkpoint location: 0/41933E90

pg_upgrade with streaming replicas

Step 4c: Check that pg_controldata (checkpoint) matches

New Primary

New
readers

9.2*

9.2*

$ pg_controldata $PGDATA | grep 'Latest checkpoint location'
Latest checkpoint location: 0/41933E90

$ pg_controldata $PGDATA | grep 'Latest checkpoint location'
Latest checkpoint location: 0/41933E90

Do not proceed unless they match

Aside: what we did before step 4b

Before stopping postgres on new primary: checkpoint in loop

New Primary

New
readers

9.2*

9.2*

postgres=# checkpoint;
$ pg_controldata $PGDATA | grep 'Latest checkpoint location'
Latest checkpoint location: 0/41933E90

postgres=# checkpoint;
$ pg_controldata $PGDATA | grep 'Latest checkpoint location'
Latest checkpoint location: 0/41933E90

Do not proceed unless they match

pg_upgrade with streaming replicas

Step 4d: Run pg_upgrade with --link (ensure no errors)

New Primary
9.2
- bin dir
- PGDATA

9.6
- bin dir
- PGDATA

pg_upgrade \
 --old-datadir [...] \
 --new-datadir [...] \
 --old-bindir [...] \
 --new-bindir [...] \
 --link

pg_upgrade with streaming replicas

Step 4e: Stop replicas, install new pg and… run rsync (?)

New Primary

New
readers

9.6

9.2*

rsync \
 --archive \
 --delete \
 --hard-links \
 --size-only \
 --no-inc-recursive \
 /opt/PostgreSQL/9.2 \
 /opt/PostgreSQL/9.6 \
 standby.example.com:/opt/PostgreSQL

rsync

pg_upgrade with streaming replicas

Step 4f: Start new primary

New Primary

New
readers

9.6

9.6

pg_upgrade with streaming replicas

Step 4g: Then start streaming replicas

New Primary

New
readers

9.6

9.6

pg_upgrade with streaming replicas

Step 5: Run ANALYZE on all tables

● Academia-specific: run before resuming reads/writes
● We have caught corruption at this stage
● This extends the required maintenance window

pg_upgrade with streaming replicas

Step 6: Point application at new nodes, resume writes

New primary

New readers

9.6

9.6

Write

Read

Should I do this?

No

Should I do this?

No

It depends…

What could go wrong?

● Standby corruption
● Postgres FM | pg_upgrade: the tricky and dangerous

parts
● pgsql-hackers: pg_upgrade instructions involving "rsync

--size-only" might lead to standby corruption?
● Adyen: Database corruption in PostgreSQL: our journey

to improving our upgrade process

https://postgres.fm/episodes/pg_upgrade-tricky-and-dangerous-parts
https://postgres.fm/episodes/pg_upgrade-tricky-and-dangerous-parts
https://www.postgresql.org/message-id/flat/CAM527d8heqkjG5VrvjU3Xjsqxg41ufUyabD9QZccdAxnpbRH-Q%40mail.gmail.com
https://www.postgresql.org/message-id/flat/CAM527d8heqkjG5VrvjU3Xjsqxg41ufUyabD9QZccdAxnpbRH-Q%40mail.gmail.com
https://www.adyen.com/knowledge-hub/database-corruption-in-postgresql
https://www.adyen.com/knowledge-hub/database-corruption-in-postgresql

Why might you want to do this anyway?

● If you have no other choice
● People run this in production, and (some) say it works

○ This is what matters

Part 2
9.6 -> 15

How to get from 9.6 to 15

● ❌ pg_dump + pg_restore
○ Too slow, we can’t shut the site down for 2 days

How to get from 9.6 to 15

● ❌ pg_dump + pg_restore
○ Too slow, we can’t shut the site down for 2 days

● ❌ pg_upgrade
○ --disable-integer-datetimes
○ Postgres 10 removed support for that compile flag

How to get from 9.6 to 15

● ✅ logical replication
○ “No” downtime
○ Keep logical replica in sync real-time
○ Built-in needs postgres 10 or higher…

■ …but pglogical extension works on 9.6

Recommended reading

PostgreSQL 12 High Availability Cookbook, Shaun Thomas

● Chapter 7: PostgreSQL Replication -> pglogical
○ (if you still need pglogical)

● Chapter 15: Zero-downtime Upgrades

Logical upgrades (high level)

Step 1: Make a new main 15 DB, with the same schema

Primary

Read replicas, failovers

New Primary

Logical upgrades (high level)

Step 2: Copy data, then stay in sync with changes

Primary

Read replicas, failovers

New Primary
logical

Logical upgrades (high level)

Step 3: Bring up new tree (streaming replication)

Primary

Read replicas, failovers

New Primary

Read replicas, failovers
(on postgres 15)

logical

Logical upgrades (high level)

Step 4: Test reads

Primary New Primary

Readers New
Readers

Write

Read

logical

Logical upgrades (high level)

Step 5: Switch writes

Primary New Primary

Readers New
Readers

Write

Read

PgBouncer
logical

Logical upgrades (high level)

Step 5: Switch writes

Primary New Primary

Readers New
Readers

Write

Read

PgBouncer

PAUSE;
<reload>
RESUME;

logical

Logical upgrades (high level)

Step 5: Switch writes

New Primary

New
Readers

Write

Read

Diving into the details

“Solved problems”

● Breaking changes
○ Parsing pg_dump output
○ Tons of surgical fixes

● Creating indexes and constraints after data load
● Long-running initial syncs

○ WAL backlog

● Smooth backup solution transition

Monitoring initial syncs

On the destination (e.g. postgres 15)

SELECT

 pg_stat_progress_copy.tuples_processed,

FROM

 pg_stat_progress_copy;

New Primary
15

Primary
9.6

tuples_processed

Monitoring initial syncs

On the source (e.g. postgres 9.6)
SELECT

c.reltuples AS row_estimate

FROM

pg_class c

LEFT JOIN pg_namespace n

ON n.oid = c.relnamespace

WHERE

n.nspname = 'public'

AND c.relname = 'followings';

Primary
9.6

New Primary
15

tuples_processed

row_estimate

Monitoring initial syncs

approx percent done* =
tuples_processed

row_estimate

*(per table)

Complications (the highlights)

1. Schema changes (migrations)
2. Duplicate strings, in spite of a UNIQUE index…
3. pglogical bugs

1. Schema changes (migrations)

● 3x-5x per week on average
● Logical replication has no schema change support
● pgl_ddl_deploy extension

○ “Transparent Logical DDL Replication”

● Magic?

https://github.com/enova/pgl_ddl_deploy

pgl_ddl_deploy: the devil is in the corner cases

● No CREATE INDEX support (by design)
○ => manually detect new indexes and create them on 15
○ pg_query ruby gem helped

● Not all DDL was guaranteed to work
● We just didn’t trust it to not break

○ => cumbersome QA + sign-off process

https://github.com/pganalyze/pg_query

2. Duplicate strings, in spite of a UNIQUE index

SELECT a.*

FROM table_name a

JOIN table_name b ON a.name = b.name

WHERE a.id = 12345;

● There is a unique index on table_name.name
● But two rows were returned

Likely culprit: “in-place” OS upgrade

● Past: ubuntu 14.04 -> 16.04
● Physical replication to a 16.04 replica
● OS upgrade = “glibc” upgrade

○ What postgres uses to sort strings
○ Every version changes its mind about sorting

● String uniqueness enforced by btree index
○ Index persists the old sorting
○ So ever since: index (slightly) wrong

1-a

1a 1-aa

1-aa

sort order

3. pglogical bugs

● Confusing error messages
● Sometimes crashes -> data loss

○ From incorrect replication slot handling
○ Had to monitor for this

● CREATE INDEX CONCURRENTLY considered harmful?
○ https://github.com/2ndQuadrant/pglogical/issues/469

https://github.com/2ndQuadrant/pglogical/issues/469

Favorite new features

Nick Meyer’s esoteric list of favorite features (9.3-9.6)

● lock_timeout
● pg_stat_wal_receiver
● pg_stat_progress_vacuum
● VACUUM improvements

Things we probably already know about (10-15)

● Built-in logical replication
● Declarative partitioning
● MERGE

Nick Meyer’s esoteric list of favorite features (10-15)

● pg_stat_statements_info

Nick Meyer’s esoteric list of favorite features (10-15)

● pg_stat_statements_info
● pg_stat_progress_*

Nick Meyer’s esoteric list of favorite features (10-15)

● pg_stat_statements_info
● pg_stat_progress_*

○ pg_stat_progress_create_index
○ pg_stat_progress_copy
○ pg_stat_progress_basebackup (pgbackrest info)

Nick Meyer’s esoteric list of favorite features (10-15)

● pg_stat_statements_info
● pg_stat_progress_*

○ pg_stat_progress_create_index
○ pg_stat_progress_copy
○ pg_stat_progress_basebackup (pgbackrest info)

● pg_sequences view

Nick Meyer’s esoteric list of favorite features (10-15)

● pg_stat_statements_info
● pg_stat_progress_*

○ pg_stat_progress_create_index
○ pg_stat_progress_copy
○ pg_stat_progress_basebackup (pgbackrest info)

● pg_sequences view
● pg_hba_file_rules

Nick Meyer’s esoteric list of favorite features (10-15)

● pg_stat_statements_info
● pg_stat_progress_*

○ pg_stat_progress_create_index
○ pg_stat_progress_copy
○ pg_stat_progress_basebackup (pgbackrest info)

● pg_sequences view
● pg_hba_file_rules
● psql --csv

Nick Meyer’s esoteric list of favorite features (10-15)

● pg_stat_statements_info
● pg_stat_progress_*

○ pg_stat_progress_create_index
○ pg_stat_progress_copy
○ pg_stat_progress_basebackup (pgbackrest info)

● pg_sequences view
● pg_hba_file_rules
● psql --csv
● max_slot_wal_keep_size

Takeaways

1. Be both patient and impatient

● The DB doesn’t care about your deadline
● Never “fire and forget” a long running operation

○ Build your own progress bar
○ pg_stat_progress_copy
○ pg_stat_progress_create_index
○ df -h

2. Learning vs doing

● Expect uncertainty in time estimates
○ But still remember “Be both patient and impatient”

● DEFERRABLE constraints
● ALTER TYPE can run in a transaction

○ But only in postgres 12+

● glibc

3. Celebrate with low-hanging fruit

● Add a new column with a default value
○ Thank you postgres 11

● Teach someone about pg_stat_progress_copy
○ (or pg_stat_progress_create_index)

4. Let’s seek to understand one another

● Solution-splaining
● Can we make upgrades easier for users?

Thanks for listening!

Questions?

