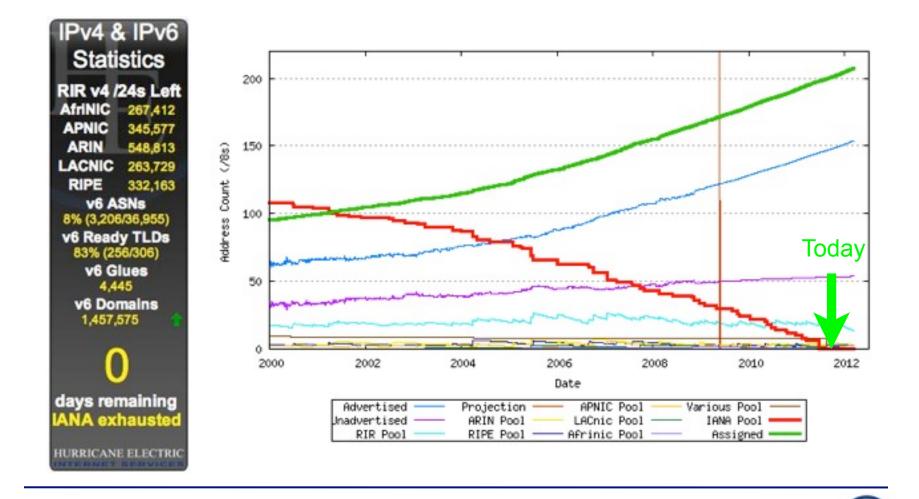

Essential IPv6 for the Linux Systems Administrator

Owen DeLong owend@he.net

Revised 1/31/2010

Hurricane Electric


Why is this important? (A year ago)

1/31/2010

Hurricane Electric

Why is this important? - Today

1/31/2010

Hurricane Electric

A review of the last 14 months in IPv4

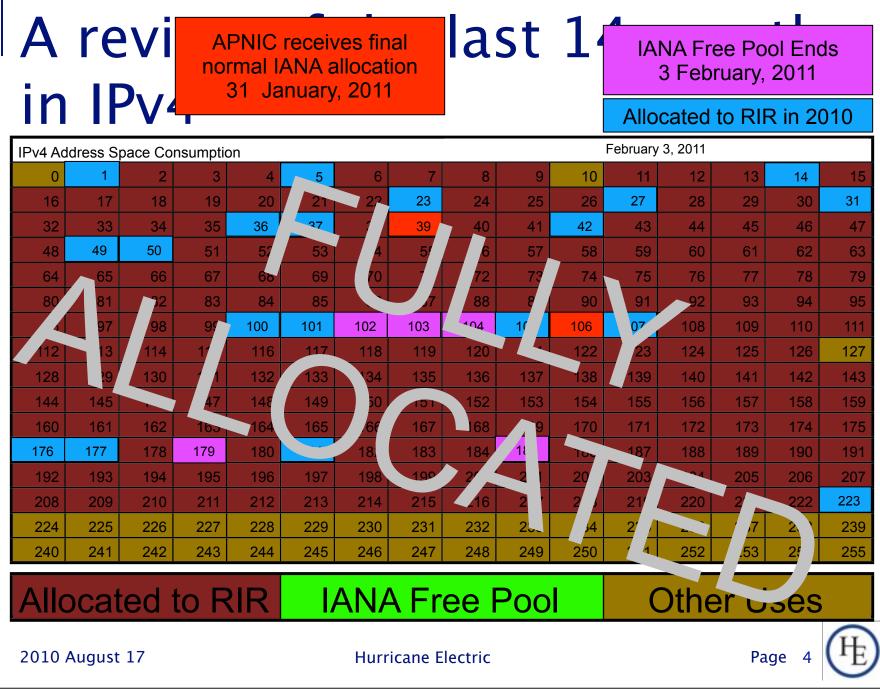
IPv4 Add	Pv4 Address Space Consumption January 2010														
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
Allo	Allocated to RIR IANA Free Pool Other Uses														
															II

2010 August 17

A review of the last 14 months in IPv4

IPv4 Address Space Consumption End of 2011															
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
Allo	Allocated to RIR					IANA Free Pool Other Uses									

2010 August 17


A revi in IPv4

APNIC receives final normal IANA allocation 31 January, 2011

last 14 months

Allocated to RIR in 2010

IPv4 Add	Pv4 Address Space Consumption End of 2011														
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
32	33	34	35	36	37	38	39	40	41	42	43	44	45	46	47
48	49	50	51	52	53	54	55	56	57	58	59	60	61	62	63
64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95
96	97	98	99	100	101	102	103	104	105	106	107	108	109	110	111
112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143
144	145	146	147	148	149	150	151	152	153	154	155	156	157	158	159
160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175
176	177	178	179	180	181	182	183	184	185	186	187	188	189	190	191
192	193	194	195	196	197	198	199	200	201	202	203	204	205	206	207
208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223
224	225	226	227	228	229	230	231	232	233	234	235	236	237	238	239
240	241	242	243	244	245	246	247	248	249	250	251	252	253	254	255
Allocated to RIR IANA Free Pool Other Use								ses							
2010 A	August	17				Hurricane Electric					Page 4 (HE				

IPv4 Runout Process

- IANA runs out first, ~2011 February 3, 2011
- RIRs start running out probably in 2012 around June, 2011
- End-User providers start running out shortly after RIR runout. Most likely, the larger ones first.
- After ISPs start running out, an increasing number of your customers/users will have limited or seriously degraded ability to connect via IPv4, possibly even no ability.

1/31/2010

Hurricane Electric

IPv6 Transition -- How ready are we?

- Things that are ready
 - **M**Backbones
 - CMTS Systems (DOCSIS 3)
 - ☑ MacOS (10.4+)

CLinux (2.6 Kernels)

Windows (7, 2008, XP (limited))

- 🗹 WiMax
 - (specification, head end equipment)
- 🗹 LTE (some)
- CPE (very limited)
- Early Adopters and some industry experts
- Hurricane Electric
 Me

IPv6 Transition -- How ready are we?

- Things that are NOT ready
 - 🖗 PON Systems
 - 🖗 DSL Systems
 - CMTS Systems (DOCSIS 2)
 - 🖗 WDS/EVDO/HSPA
 - WIMAX (handsets, providers)

- Older Windows (XP and earlier)
- Embedded systems
- Printers
- Home entertainment devices
- 🖗 CPE (most)
- Most IT staff and management

1/31/2010

1/31/2010

Hurricane Electric

Page

How many of you have started planning IPv6 in your organization?

1/31/2010

Hurricane Electric

Page 8

How many of you have started planning IPv6 in your organization?

How many of you have IPv6 running in a test environment?

1/31/2010

Hurricane Electric

Page

How many of you have started planning IPv6 in your organization?

- How many of you have IPv6 running in a test environment?
- How many of you have started deploying IPv6 to your organization?

Hurricane Electric

How many of you have started planning IPv6 in your organization?

- How many of you have IPv6 running in a test environment?
- How many of you have started deploying IPv6 to your organization?
- How many of you have a fully production dual-stack environment running in your organization?

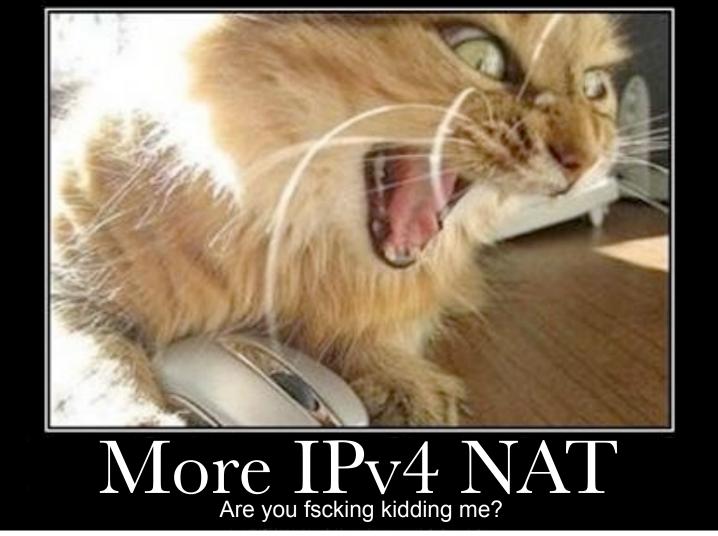
1/31/2010

Hurricane Electric

The real questions...

- How many of you think your organization will be fully IPv6 ready by June, 2011?
- What do you plan to do to fix that?
- How do you plan to cope with a world where there are no more IPv4 addresses available?
- How do you plan to cope with a world where some of your customers have only IPv6 connectivity, or, severely degraded IPv4 connectivity?

The final question... Which Approach will you take?



1/31/2010

Hurricane Electric

LoL Kitteh sez:

1/31/2010

Hurricane Electric

Page 11 (HE

What we'll cover

- Basics of IPv6
- IPv6 Addressing Methods
 - SLAAC
 - DHCP
 - Static
 - Privacy
- Linux Configuration for Native Dual Stack
- IPv6 without a native backbone availableFree IPv6?

1/31/2010

Some additional topics

- Routing
- Firewalls
- DNS
- Reverse DNS
- Troubleshooting
- Staff Training

Hurricane Electric

Basics: IPv4 vs. IPv6

Property	IPv4 Address	IPv6 Address					
Bits	32	128					
Total address space	3,758,096,384 unicast 268,435,456 multicast 268,435,456 Experimental/other (Class E, F, G)	42+ Undecilion assignable ¹ 297+ Undeciliion IANA reserved ²					
Most prevalent network size	/24 (254 usable hosts)	/64 (18,446,744,073,709,551,616 host addresses)					
Notation	Dotted Decimal Octets (192.0.2.239)	Hexidecimal Quads (2001:db8:1234:9fef::1)					
Shortening	Suppress leading zeroes per octet	Suppress leading zeroes per quad, longest group of zeroes replaced with ::					
¹ 42,535,295,865,117,307,932,921,825,928,971,026,432 assignable unicast (1/8th of total) ² 297,747,071,055,821,155,530,452,781,502,797,185,024 IANA reserved (7/8th of total)							

1/31/2010

Hurricane Electric

Relative Address Space (Perspective)

Each circle is 284 pixels

An IPv6 /64 Would fill a little more than 1,532,464 screens at 1024x768 pixels

A shape to represent the relative number of IPv6 /64 networks would require more than 1,532,464 million screens at 1024x768 pixels

The IPv6 Address space is not infinite, but, considering that there are more than 4 billion IPv6 network numbers for every possible IPv4 address, it is nearly so for all practical purposes.

Just in case, however, all current IPv6 is being issued from 1/8th of the total address space. If we need to allocate or assign more conservatively or develop a different assignment strategy, that can be deployed to some fraction of the remaining address space.

Network Size and Number of networks (The tasty version)

One IPv4 /24 -- 254 M&Ms *

Full Address Space, One M&M per /24 covers 70% of a football field

One IPv6 /64 -- Enough M&Ms to fill all 5 of the great lakes.

Full Address Space, One M&M per/64 fills all 5 great lakes.

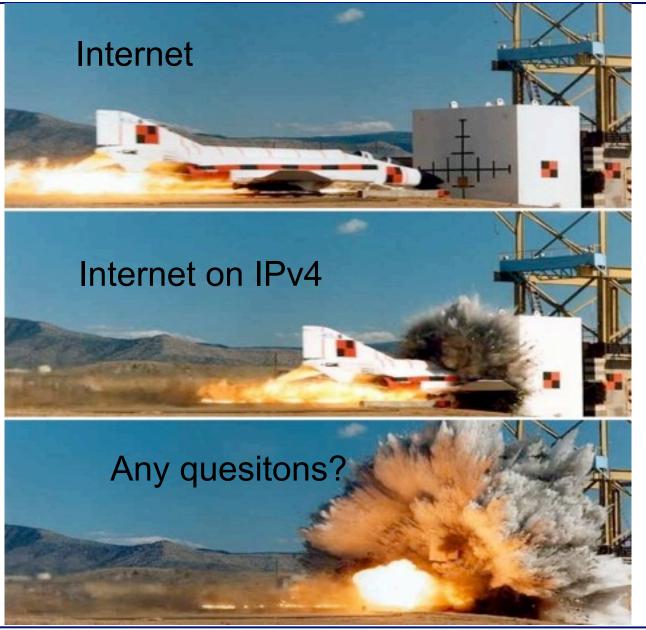
Page 16

Comparison based on Almond M&Ms, not plain. Caution! Do not attempt to eat a /64 worth of any style of M&Ms.

Basics: IPv4 vs. IPv6 thinking

Thought	IPv4 dogma	IPv6 dogma
Assignment Unit	Address (/32)	Network (/64)
Address Optimization	Tradeoff Aggregation, Scarcity	Aggregation (At least for this first 1/8th of the address space)
Address Issue Methodology	Sequential, Slow Start, frequent fragmentation	Bisection (minimize fragmentation), issue large, minimal requests for more, aggregate expansions.
NAT	Necessary for address conservation	Not supported, Not needed Breaks more than it solves (other than possible NAT64)
Address Configuration	Static, DHCP	Stateless Autoconf, Static, some DHCP (needs work), DHCP-PD (NEW!!)

1/31/2010


Example: v6 only clients with v4 only servers

1/31/2010

Hurricane Electric

1/31/2010

Hurricane Electric

Basics Address Scopes

- Link Local -- fe80::<UUVV:WW>ff:fe<XX:YYZZ> only valid on directly attached subnet.
- Site Local (deprecated) -- Only valid within site, use ULA or global as substitute.
- Unique Local Addresses (ULA) -- Essentially replaces IPv4 RFC-1918, but, more theoretical uniqueness.
- Global -- Pretty much any other address, currently issued from 2000::/3, globally unique and valid in global routing tables.

1/31/2010

Hurricane Electric

Basics: Stateless Autoconfiguration

- Easiest configuration
- No host configuration required
- Provides only Prefix and Router information, no services addresses (DNS, NTP, etc.)
- Assumes that all advertising routers are created equal, rogue RA can be pretty transparent to user (RA guard required on switches to avoid)

1/31/2010

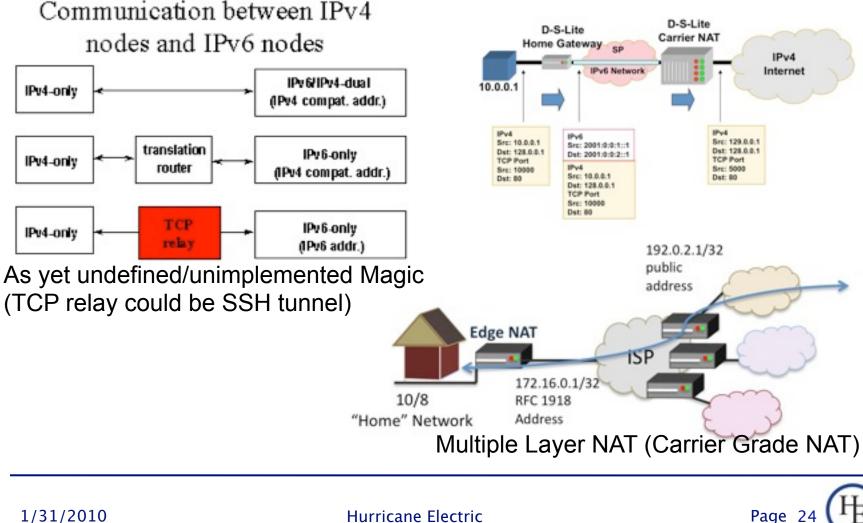
Stateless Autoconfiguration Process

- Host uses MAC address to produce Link Local Address. If MAC is EUI-48, convert to EUI-64 per IEEE process: invert 0x02 bit of first octet, insert 0xFFFE between first 24 bits and last 24 bits fe80::<EUI-64>
- IPv6 shutdown on interface if duplicate detected.
- ICMP6 Router Solicitation sent to All Routers Multicast Group

1/31/2010

Hurricane Electric

Stateless Autoconfigration Process (cont.)


- Routers send ICMP6 Router Advertisement to link local unicast in response. Also sent to All Hosts Multicast group at regular intervals.
- Router Advertisement includes Prefix(es), Preference, Desired Lifetime, Valid Lifetime.
- Host resets applicable Lifetime counters each time valid RA received.
- Address no longer used for new connections after Desired lifetime expires.
- Address removed from interface at end of Valid lifetime.
- Prefix(es)+EUI-64 = Host EUI-64 Global Address, netmask always /64 for SLAAC.

Page 2

1/31/2010

If you think IPv6 is hard, wait until you try any of these.

Dual Stack Lite (ISC)

DHCPv6

- Can assign prefixes other than /64 --Theoretically to routers which then delegate various networks automatically downstream, a few limited implementations of this feature.
- Can assign addresses to hosts, cannot provide default router information.
- Can provide additional information about servers (DNS, Bootfile, NTP, etc.)
- Not much vendor support (yet)

1/31/2010

Hurricane Electric

Static Addressing

- IPv6 can be assigned statically, same as IPv4
- Common to use one of two techniques for IPv4 overlay networks:
 - Prefix::<addr> (first 12 bits of 64 bit <addr> must be 0)
 - Either <addr> is IPv4 last octet(s) expressed as BCD, or <addr> is IPv4 last octet(s) converted to hex.
 - e.g. 192.0.2.154/24 -> 2001:db8:cafe:beef::154/64 (BCD) or 2001:db8:cafe:beef::9a/64 (Hex)
 - These mappings won't conflict with autoconfigured addresses since autoconfigured addresses will never be 000x:xxxx:xxxx.

1/31/2010

Privacy Addresses

- Essentially a special form of Stateless Address Autoconfiguration which uses a new suffix for each flow and obfuscates the MAC address.
- RFC-3041
- Uses MD5 Hash with random component to generate temporary address
- Preferred and Valid lifetimes derived from SLAAC address

1/31/2010

Multiple addresses per interface

- IPv4 has some support for this in most implementations.
- IPv6 has full support for this in all implementations.
- IPv4, multiple addresses/interface are exception.
- IPv6, single address on an interface nearly impossible in useful implementation (link local required, global optional)

1/31/2010

IPSEC

- In IPv4, IPSEC is add-on software.
- In IPv6, IPSEC is a required part of any IPv6 implementation
- IPv6 does NOT require IPSEC utilization
- IPSEC is considerably easier to configure in IPv6.
- IPSEC automation may be possible in future IPv6 implementations.

1/31/2010

Hurricane Electric

Page 2

Configuring IPv6 Native on Linux

- Interface Configuration depends on your distro.
- Debian based distros (Debian, Ubuntu, etc.) use /etc/interfaces
- Red Hat based distros (RHEL, Fedora, CentOS) use /etc/sysconfig/network-scripts/ ifcfg-<int>

1/31/2010

Hurricane Electric

Page 30

/etc/interfaces

iface eth0 inet static address 192.0.2.127 netmask 255.255.255.0 gateway 192.0.2.1

IPv4 (Static)

iface eth0 inet6 static
 address 2001:db8:c0:0002::7f
 netmask 64
 gateway 2001:db8:c0:0002::1

iface eth1 inet6 auto

IPv6 (Static)

IPv6 (Autoconf)

1/31/2010

/etc/sysconfig/network-scripts/ ifcfg-<int>

DEVICE=eth0 ONBOOT=yes IPADDR=192.159.10.2 NETMASK=255.255.255.0 GATEWAY=192.159.10.254

IPv4 (Static)

IPV6INIT=yes
IPV6ADDR=2620:0:930::0200:1/64
IPV6_DEFAULTGW=2620:0:930::dead:beef
IPV6_AUTOCONF=no
IPV6ADDR_SECONDARIES="\
2001:470:1f00:3142::0200:1/64 \
2001:470:1f00:3142::0200:2/64"

IPV6INIT=yes IPV6_AUTOCONF=yes IPv6 (Static)

IPv6 (Autoconf)

1/31/2010

IPv6 without a native connection

- Three options (In order of preference)
 - 6in4 -- Tunnel your IPv6 in an IPv4 GRE Tunnel
 - 6to4 -- Tunnel your IPv6 in an auto-tunnel using an any-casted IPv6 mapping service
 - Teredo -- Tunnel your IPv6 in an auto-tunnel using a multi-server auto-configured process defined by Microsoft.

Why 6in4

- GRE is well understood by most networkers
- Simple and deterministic
- No anycast magic -- Simplifies debugging
- Controlled by two endpoint adminsitrators --Greatly simplifies debugging
- Disadvantage: Manual config, but, not hard.

Why 6to4

- Automatic configuration
- When it works, it's pretty clean and relatively self-optimizing.
- May be good option for mobile devices (laptop, cellphone, etc.)
- Hard to troubleshoot when it doesn't work.
- Disadvantage: Anycast == Non-deterministic debugging process.

1/31/2010

Hurricane Electric

Page 3

Why Teredo?

- Autoconfiguration
- May bypass more firewalls than 6to4
- Enabled by default in Windows (whether you want it or not)
- Meredo available for Linux (client and server)
- Disadvantage: Complicated and tricky to debug if problems occur.

1/31/2010

Configuring a 6in4 tunnel on Linux

- Not as straightforward as you would hope.
- Help available at <u>http://tunnelbroker.net</u>
- Example (route2, most 2.6+ kernels):

modprobe ipv6
ip tunnel add he-ipv6 mode sit remote 64.71.128.82 local 192.159.10.254
ttl 255
ip link set he-ipv6 up
ip addr add 2001:470:1F02:BE2::2/64 dev he-ipv6
ip route add ::/0 dev he-ipv6
ip -f inet6 addr

Doesn't seem to be supported in Debian configuration files at this time.

1/31/2010

Configuring 6in4 continued

Example Net Tools (most 2.4 kernels, some 2.6)

ifconfig sit0 up ifconfig sit0 inet6 tunnel ::64.71.128.82 ifconfig sit1 up ifconfig sit1 inet6 add 2001:470:1F02:BE2::2/64 route -A inet6 add ::/0 dev sit1

Also not supported in configuration files

1/31/2010

Fedora 12 Configuration Files

Example:

/etc/sysconfig/network-scripts/ifcfg-sit1

DEVICE=sit1 BOOTPROTO=none ONBOOT=yes IPV6INIT=yes IPV6TUNNELIPV4=64.71.128.82 IPV6TUNNELIPV4LOCAL=192.159.10.2 IPV6ADDR=2001:470:1f02:BE2::2/64

/etc/sysconfig/network

NETWORKING=yes NETWORKING_IPV6=yes HOSTNAME=myhost.example.com IPV6_ROUTER=yes IPV6FORWARDING=yes

1/31/2010

Fedora 12 Configuration Files

Example:

/etc/sysconfig/static-routes-ipv6

sit1 ::/0

/etc/sysconfig/network-scripts/route6-sit1

2001:470:1f00:3142::/64

Page 40

1/31/2010

IPv6 For Free? YES!!

Several tunnel brokers offer free IPv6.

- My favorite is the HE Tunnelbroker at <u>www.tunnelbroker.net</u>
- If you or your organization has a presence at an exchange point with Hurricane Electric, we currently offer free IPv6 Transit.

Routing

- Usual suspects
 - OSPF (OSPFv3)
 - BGP (BGP4 Address Family inet6)
 - RA and RADVD
 - Support in Quagga and others

Firewalls

ip6tables much like iptables Excerpt from my ip6tables configuration

Hurricane Electric

1/31/2010

DNS

Forward DNS

Instant IPv6 -- Just add AAAA

Reverse DNS

- Slightly more complicated
- ip6.arpa
- 2620:0:930::200:2 -> 2620:0000:0930:0000:0000:0200:0002
- 2620:0000:0930:0000:0000:0200:0002 -> 2000:0020:0000:0000:0390:0000:0262
- 2000:0020:0000:0000:0390:0000:0262 -> 2.0.0.0.0.2.0.0.0.0.0.0.0.0.0.0.0.0.3.9.0.0.0.0.0.2.6.2.ip6.arpa

1/31/2010

DNS -- BIND Configuration

- Current BIND versions ship with IPv6 template zones (hints, rfc1912, etc.)
- IPv6 addresses valid in ACLs just like IPv4, same rules
- Zone configuration identical except reverse zones for IPv6 ranges called "ip6.arpa":

```
zone "0.3.9.0.0.0.0.0.0.2.6.2.ip6.arpa" IN {
    type master;
    file "named.2620:0:930::-48.rev";
};
```

1/31/2010

Hurricane Electric

Page 4

DNS -- BIND Configuration

- In IPv6 Reverse Zone files, \$ORIGIN is your friend!
- Forward Zones A for IPv4, AAAA for IPv6, basically what you're used to:

mailhost	IN	А	192.159.10.2
	IN	AAAA	2620:0:930::200:2

Reverse Zones PTR records, as described above:

\$ORIGIN 0.0.2.0.0.0.0.	0.0.0.0.0.0	.0.0.0.0.3	3.9.0.0.0.0.0.0.2.6.2.ip6.arpa.
1.0.0.0	IN	PTR	ns.delong.sj.ca.us.
2.0.0.0	IN	PTR	owen.delong.sj.ca.us.
4.0.0.0	IN	PTR	irkutsk.delong.sj.ca.us.

1/31/2010

DNS -- Reverse DNS Details

In this example, we see:

\$ORIGIN	0.0.2.0.0.0.0.0.0.0.0.0.	.0.0.0.0.0.	0.3.9.0.0.0.0.0.0.2.6.2.ip6.arpa.
1.0.0.0	IN	PTR	ns.delong.sj.ca.us.
2.0.0.0	IN	PTR	owen.delong.sj.ca.us.
4.0.0.0	IN	PTR	irkutsk.delong.sj.ca.us.

- SORIGIN saves us lots of typing for 2620:0:930::200:
- Each entry contains the 4 hex digits for the last quad (0001, 0002, 0004)
- Note each nibble is a zone boundary

1/31/2010

DNS -- Common Reverse DNS mistakes

- Not enough zeroes -- 2620:0:930::200:2 is much easier to type, but, remember for reverse DNS you have to expand all those suppressed zeroes before you reverse the address.
- Missing dots (.) -- Every nibble gets one.
 - 2.0.0.0.0.2.0.0.0.0.0.0.0.0.0.3.9.0.0.0.0.0.2.6.2
 - Do you see the error in the previous line?

Page

1/31/2010

Troubleshooting

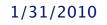
- Mostly like troubleshooting IPv4
- Mostly the same kinds of things go wrong
- Just like IPv4, start at L1 and work up the stack until it all works.
- If you are using IPv4 and IPv6 together, may be easier (due to familiarity) to troubleshoot L1-2 on IPv4.

Hurricane Electric

Page

Troubleshooting

Common problems


- Cannot ping remote IPv6 address on Tunnel
- Cannot ping remote IPv6 address on ethernet
- Cannot ping MY IPv6 address (tunnel or ethernet)
- Cannot reach IPv6 Internet
 - Long waits for IPv6 enabled websites
 - Long delays in host resolution
- Why don't my IPv6 neighbors show up in ARP?

1/31/2010

A wee bit about Neighbor Discovery and other tools

- No broadcasts, no ARP
- This is one of the key differences with IPv6.
- Instead an all hosts multicast address is used.
- IPv4: arp 192.0.2.123
- IPv6: ip -f inet6 neigh show 2620:0:930::200:2
- ping -> ping6
- traceroute -> traceroute6
- telnet, ssh, wget, etc. just work

Cool SSH trick

- Special for those that made it through the whole presentation:
- If you have a dual stack host you can SSH to in between an IPv4 only and an IPv6 only host that need to talk TCP, then, you can do this from the client:
- ssh user@dshost -L <lport>:server:<dport>
- Then, from the client, connect to localhost: Iport and the SSH tunnel will actually protocol translate the session.

1/31/2010

SSH trick example

- myhost -- IPv6-only host 2620:0:930::200:f9
- dshost -- IPv4/v6 dual stack host: 192.159.10.2 and 2620:0:930::200:2
- desthost -- IPv4-only host 192.159.10.100
- On myhost I type:
 - □ ssh owen@2620:0:930::200:2 -L 8000:192.159.10.100:80
 - Then, I can browse to http://[::1]:8000
- My browser will connect to the ssh tunnel via IPv6, and, the SSH daemon at dshost will pass the contents along via IPv4.

1/31/2010

Staff Training

- Hopefully this presentation works towards that.
- You'll need more.
- Plan for it.
- Budget for it.
- Allocate time for it.
- If possible, have the staff being trained leave their pagers/blackberries/iPhones/etc. in the car during training.

1/31/2010

Q&A

Contact:

Owen DeLong IPv6 Evangelist Hurricane Electric 760 Mission Court Fremont, CA 94539, USA http://he.net/

owend at he dot net +1 (408) 890 7992

1/31/2010

Hurricane Electric

Tuesday, March 8, 2011